توضیحاتی در مورد کتاب Industrial Internet of Things: Technologies, Design, and Applications (Artificial Intelligence (AI): Elementary to Advanced Practices)
نام کتاب : Industrial Internet of Things: Technologies, Design, and Applications (Artificial Intelligence (AI): Elementary to Advanced Practices)
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : اینترنت اشیاء صنعتی: فناوریها، طراحی و برنامههای کاربردی (هوش مصنوعی (AI): ابتدایی تا روشهای پیشرفته)
سری :
نویسندگان : Sudan Jha (editor), Usman Tariq (editor), Gyanendra Prasad Joshi (editor), Vijender Kumar Solanki (editor)
ناشر : CRC Press
سال نشر : 2022
تعداد صفحات : 248
[240]
ISBN (شابک) : 0367607778 , 9780367607777
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 25 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
طراحی مواد به کمک هوش مصنوعی: الگوریتمهای هوش مصنوعی و مطالعات موردی روی آلیاژها و فرآیندهای متالورژی، کاربرد مفاهیم هوش مصنوعی (AI)/یادگیری ماشین (ML) را برای توسعه مدلهای پیشبینیکننده که میتوانند برای طراحی استفاده شوند، توصیف میکند. مواد آلیاژی، از جمله آلیاژهای مغناطیسی، سوپرآلیاژهای پایه نیکل، آلیاژهای پایه تیتانیوم و آلیاژهای پایه آلومینیوم. خوانندگانی که با الگوریتمهای AI/ML جدید هستند، میتوانند از این کتاب به عنوان نقطه شروع استفاده کنند و از طریق مطالعات موردی گنجانده شده، از پیادهسازی MATLAB و Python الگوریتمهای AI/ML استفاده کنند. محققان باتجربه AI/ML که می خواهند الگوریتم های جدیدی را امتحان کنند می توانند از این کتاب استفاده کنند و مطالعات موردی را برای مرجع مطالعه کنند.
- مزایا و محدودیتهای چندین مفهوم هوش مصنوعی و اجرای صحیح آنها را در انواع دادههای مختلف تولید شده از طریق آزمایشها و شبیهسازیهای کامپیوتری و از صنایع در فرمتهای فایل مختلف ارائه میدهد
- به خوانندگان کمک می کند تا با نوشتن کدهای کامپیوتری خود یا استفاده از منابعی که نیازی به نوشتن کد ندارند، مدل های پیش بینی را از طریق الگوریتم های AI/ML توسعه دهند
- منابع قابل دانلودی مانند MATLAB GUI/APP و پیاده سازی Python را ارائه می دهد که می تواند در دستگاه های تلفن همراه رایج استفاده شود
- درباره رویکرد CALPHAD و روش های استفاده از داده های تولید شده از آن بحث می کند
- دارای فصلی در مورد مفاهیم متالورژی/مواد برای کمک به خوانندگان در درک مطالعات موردی و در نتیجه اجرای صحیح الگوریتم های AI/ML تحت چارچوب علم مواد مبتنی بر داده
ul>این کتاب برای دانشمندان مواد و متالورژیستهایی نوشته شده است که علاقهمند به کاربرد هوش مصنوعی، ML و علم داده در توسعه مواد جدید هستند.
فهرست مطالب :
Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Foreword
Editors
Contributors
Chapter 1: Introduction to Industrial Internet of Things (IIoT)
1.1 Industrial Internet of Things
1.2 IoT, IIoT and Industry 4.0
1.3 IIoT Architectures and Frameworks
1.4 Challenges of IIoT
1.5 Conclusion
References
Chapter 2: Challenges in Industrial Internet of Things (IIoT)
2.1 Introduction
2.2 Application of IIoT
2.2.1 Manufacture Industry
2.2.1.1 Sectors Where IIoT Has Been Adopted in the Manufacturing Industry
2.2.1.2 Challenges for IIoT in Manufacturing
2.2.2 Agriculture Industry
2.2.2.1 Sectors That Implement IIoT in Agriculture Industry
2.2.2.2 Challenges for IIoT in the Agriculture Industry
2.2.3 IIoT in Connected Logistics, Transportation, and Warehousing
2.2.3.1 Sectors That Implement IIoT in Connected Logistics and Transportation
2.2.3.2 Challenges of IIoT in Logistics and Transportation
2.2.4 IIoT in Healthcare
2.2.4.1 Sectors That Implement IIoT in Healthcare
2.2.4.2 Challenges of IIoT in Healthcare
2.3 Challenges Based on IIoT Components
2.3.1 Challenges in Devices
2.3.2 Challenges in Network
2.3.3 Challenges in Data
2.4 Future Technology and Its Challenges
2.4.1 5G-based IIoT
2.4.2 Blockchain-Based IIoT
2.5 Conclusion
Bibliography
Chapter 3: IoT-Based Automated Healthcare System
3.1 Introduction
3.1.1 Software-Defined Network
3.1.2 Network Function Virtualization
3.1.3 Sensor Used in IoT Devices
3.2 SDN-Based IoT Framework
3.3 Literature Survey
3.4 Architecture of SDN-based IoT for Healthcare System
3.5 Challenges
3.6 Conclusion
References
Chapter 4: Internet of Things (IoT)-Based Industrial Monitoring System
4.1 Introduction
4.1.1 Background
4.1.2 Project Organization
4.2 Literature Review
4.2.1 “IoT” and Its Smart Applications
4.2.2 Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-based Processing: Opportunities and Challenges
4.2.3 IoT (Internet of Things)-Based Monitoring and Control System for Home Automation
4.2.4 Industrial Automation Using IoT
4.3 Hardware and Software
4.3.1 Hardware
4.3.1.1 NODEMCU
4.3.1.2 ESP8266
4.3.1.3 Gas Sensor
4.3.1.4 DHT11
4.3.1.5 PIR Sensor
4.3.1.6 Breadboard
4.3.1.7 Power Board
4.3.1.8 MCP3008
4.3.1.9 Buzzer
4.3.2 Software
4.3.2.1 Web Server
4.3.2.2 Arduino Studio
4.4 Experimental Studies and Results
4.4.1 Sensor Analysis
4.4.1.1 Thinger.io Overview
4.4.2 DHT11 Sensor Analysis
4.4.3 MQ-2 Gas Sensor Analysis
4.4.4 PIR Sensor Analysis
4.4.5 Block Diagram of this System
4.4.6 Sensor Recognition Process
4.4.7 Real Life Implementation
4.5 Conclusion
4.5.1 Future Work
4.5.2 Discussion
References
Chapter 5: Internet Working of Vehicles and Relevant Issues in IoT Environment
5.1 Introduction
5.2 VANETs Architecture
5.3 Communication Architecture
5.3.1 In-vehicle Communication
5.3.2 Vehicle to Vehicle Communication (V2V)
5.3.3 Vehicle to Roadside Infrastructure (V2I) Communication
5.3.4 Vehicle to Broad Cloud (V2B) Communication
5.4 VANETs Applications
5.4.1 Traffic Signal
5.4.2 Weather and Other Hard Conditions
5.4.3 Vision Enhancement
5.4.4 Assistance to the Driver
5.4.5 Automatic Parking
5.4.6 Information On Roadside Locations
5.4.7 Entertainment
5.4.8 Safety
5.5 DSRC Channels Access
5.6 A Case Study of Accident Detection on Road
5.7 Introduction to Clustering
5.7.1 Data Aggregation
5.7.2 Data Aggregation and Fusion Schemes in VANETs
5.8 Requirements of Security in VANETs
5.9 Menace to Availability
5.10 Menace to Authenticity [ 22, 23 ]
5.11 Issues in VANET
5.11.1 Security
5.11.2 Overheads Reduction
5.11.3 Power Consumption
5.11.4 Computational Time
5.12 Conclusion
References
Chapter 6: Adoption of Industry 4.0 in Lean Manufacturing
6.1 Introduction
6.2 Related Work
6.3 Cyber-Physical Systems (CPS)
6.4 Importance of CPS Applications
6.5 Smart and Connected Products
6.6 Applications of Smart and Connected Products
6.7 Industry 4.0
6.8 Identification, Sensing and Communication
6.9 RFID and Networks
6.10 Middleware
6.11 Applications
6.12 Lean Manufacturing
6.13 Principles of Lean Manufacturing
6.14 Definition of Values
6.15 Mapping of Value System
6.16 Flow Establishment, Pull System and Origin of the Toyota Production System
6.17 Lean Learning Industries
6.18 Challenges of Lean Manufacturing
6.19 Conclusion
References
Chapter 7: Internet of Things-Based Economical Smart Home Automation System
7.1 Introduction
7.2 Pros of Home Automation Systems (HAS)
7.3 Existing System
7.4 Research Gaps
7.5 Proposed System
7.6 Methodology
7.6.1 Framework
7.6.2 Component Requirement Analysis
7.6.2.1 Hardware Requirements
7.6.2.2 Software Requirements
7.7 Implementation
7.8 Functional Requirements
7.9 Results and Discussion
7.10 Conclusion
References
Chapter 8: Machine Vision Technology, Deep Learning, and IoT in Agricultural Industry
8.1 Introduction to Smart Farming
8.1.1 Crop Management
8.1.2 Field Condition Management
8.1.3 Livestock Management
8.1.4 Pest Management
8.1.5 Weather Forecasting
8.2 Machine Vision Technology
8.2.1 Components of Machine Vision
8.2.2 Machine Vision in Agriculture
8.3 Deep Learning and Its Techniques
8.3.1 Feed-Forward Neural Network and Back Propagation (BP)
8.3.2 Convolutional Neural Networks (CNN/ConvNet)
8.3.3 Recurrent Neural Networks (RNN)
8.3.4 Generative Adversarial Networks (GAN)
8.4 Advantages of Combining Machine Vision and Deep Learning
8.5 IoT Solutions to Agricultural Problems
8.5.1 Advantages of IoT in Smart Farming
8.5.2 IoT Use Cases in Smart Farming
8.5.2.1 Climate Conditions Monitoring
8.5.2.2 Automation of Greenhouse
8.5.2.3 Management of Crops
8.5.2.4 Cattle Monitoring and Management
8.5.2.5 Precision Farming
8.5.2.6 Agricultural Drones
8.5.2.7 Predictive Analytics for Smart Farming
8.5.3 Challenges in IoT Based Smart Farming
8.5.3.1 Sensor Selection
8.5.3.2 Appropriate Data Analytical Tools
8.5.3.3 Maintenance of IoT Setup
8.5.3.4 Connectivity
8.5.3.5 Data Security
8.5.3.6 Data Collection Frequency
8.6 Agrobots – Agricultural Robots
8.6.1 Agrobots Working in Fields for Different Agricultural Activities
8.6.2 Harvesting Robots
8.6.3 Challenges in Implementing Agrobots
8.6.4 Conclusion and Future Work
References
Chapter 9: IIoT Edge Network and Spectrum Scarcity Issue
9.1 Introduction
9.1.1 IoT and IIoT
9.2 IIoT Edge and Edge Devices
9.3 Computing Strategies for IIoT
9.3.1 Cloud Computing
9.4 Edge Computing
9.5 Fog Computing and Hybrid Techniques
9.6 Connectivity on IIoT
9.7 CR for Future IIoT
9.7.1 Spectrum Scarcity Problem in IIoT and Cognitive-IIoT
9.7.2 Cognitive LPWAN for IIoT
9.8 Conclusion
References
Chapter 10: Review on Optical Character Recognition-Based Applications of Industrial IoT
10.1 Introduction
10.2 Literature Review
10.3 Conclusion
References
Chapter 11: Using Blockchain in Resolving the Challenges Faced by IIoT
11.1 Introduction
11.2 What is a Blockchain? Structure and Concepts
11.3 Smart Contracts
11.4 Consensus Algorithm
11.5 Internet of Things (IoT) and Its Technologies
11.6 Trust and Information Security in IoT
11.7 Blockchain and IoT
11.8 Industrial IoT (IIoT) and Emergence of Industry 4.0
11.9 Technological Advancements Related to Industry 4.0
11.10 Use Cases of IIoT
11.11 IIoT Architecture and Scenario
11.12 Aims and Limitations of IIoT
11.13 Challenges Faced by IIoT and How Blockchain Helps in Resolving These Challenges
11.14 Blockchain in Resolving the Challenges Faced by IIoT
11.15 Conclusion
References
Chapter 12: Internet of Things-Based Arduino Controlled On-Load Tap Changer Distribution Transformer
12.1 Introduction
12.2 Review of Literature
12.3 Block Diagram
12.4 Design Solutions
12.5 Working
12.6 Conclusion
12.7 Future Scope
References
Index
توضیحاتی در مورد کتاب به زبان اصلی :
Artificial Intelligence-Aided Materials Design: AI-Algorithms and Case Studies on Alloys and Metallurgical Processes describes the application of artificial intelligence (AI)/machine learning (ML) concepts to develop predictive models that can be used to design alloy materials, including magnetic alloys, nickel-base superalloys, titanium-base alloys, and aluminum-base alloys. Readers new to AI/ML algorithms can use this book as a starting point and use the included MATLAB and Python implementation of AI/ML algorithms through included case studies. Experienced AI/ML researchers who want to try new algorithms can use this book and study the case studies for reference.
- Offers advantages and limitations of several AI concepts and their proper implementation in various data types generated through experiments and computer simulations and from industries in different file formats
- Helps readers develop predictive models through AI/ML algorithms by writing their own computer code or using resources where they do not have to write code
- Provides downloadable resources such as MATLAB GUI/APP and Python implementation that can be used on common mobile devices
- Discusses the CALPHAD approach and ways to use data generated from it
- Features a chapter on metallurgical/materials concepts to help readers understand the case studies and thus proper implementation of AI/ML algorithms under the framework of data-driven materials science
This book is written for materials scientists and metallurgists interested in the application of AI, ML, and data science in the development of new materials.