توضیحاتی در مورد کتاب Innovations in Multivariate Statistical Modeling. Navigating Theoretical and Multidisciplinary Domains
نام کتاب : Innovations in Multivariate Statistical Modeling. Navigating Theoretical and Multidisciplinary Domains
عنوان ترجمه شده به فارسی : نوآوری در مدل سازی آماری چند متغیره. پیمایش حوزه های نظری و چند رشته ای
سری : Emerging Topics in Statistics and Biostatistics
نویسندگان : Andriëtte Bekker, Johannes T. Ferreira, Mohammad Arashi, Ding-Geng Chen
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 434
ISBN (شابک) : 9783031139703 , 9783031139710
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 13 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Contents
About the Editors
Trends in Multi- and Matrix-Variate Analysis
Association-Based Optimal Subpopulation Selection for Multivariate Data
1 Introduction
2 The Proposed Method
Averaged Absolute Association (AAA) Criterion
Efficient Algorithms
3 Simulation Study
Evaluation of Selected Subpopulation
Comparisons of the Algorithms
Comparison with the Tau-Path Method
4 Case Study
5 Discussion
References
Likelihood-Based Inference for Linear Mixed-Effects Models with Censored Response Using Skew-Normal Distribution
1 Introduction
2 The Multivariate Skew-Normal Distribution
3 The Skew-Normal Linear Mixed-Effects Model with Censored Responses
The Statistical Model
The Likelihood Function
The ECM Algorithm
Approximate Standard Errors
Estimation of the Random Effects
Prediction of Future Observations
4 Illustrative Example—UTI Data
5 Conclusions
References
Robust Estimation of Multiple Change Points in Multivariate Processes
1 Introduction
2 Methodology
Matrix Normal Distribution
Change Point Estimation
3 Experiments
4 Applications
Illustration on Crime Rates in US Cities
Effect of Colorado Amendment 64
5 Discussion
References
Some Computational Aspects of a Noncentral Dirichlet Family
1 Introduction
2 Foundations of the Dirichlet
3 Methods and Approach
Log-Likelihood
Method for Investigating lamda 3λ3
Initial Parameters for MLE Search
4 Data Fitting
Simulation Study 1
Simulation Study 2
Dataset 1—Household Expenditure Data
Dataset 2—Pekin Duckling Data
5 Final Thoughts and Future Directions
References
Modeling Handwritten Digits Dataset Using the Matrix Variate t Distribution
1 Introduction
2 Matrix Variate t Distribution
3 Parameter Estimation
Maximum Likelihood Estimation
Estimation via EM Algorithm
4 Simulation Study and Real Data Example
Simulation Study
Real Data Example
5 Conclusions
References
On the Identification of Extreme Elements in a Residual for the GMANOVA-MANOVA Model
1 Introduction
2 Background
Residuals in the GMANOVA-MANOVA Model
The GMANOVA-MANOVA Model and the Parametric Bootstrap Technique
3 Data Analysis
4 Concluding Remarks
References
Matrix-variate Smooth Transition Models for Temporal Networks
1 Introduction
2 A Smooth Transition Matrix Model
Transition Mechanisms
Nonlinear Network Models
Extensions
3 Bayesian Inference
Prior Specification
Posterior Approximation
4 Empirical Analysis
Volatility Networks
Oil Production Networks
5 Conclusion
References
A Flexible Matrix-Valued Response Regression for Skewed Data
1 Introduction
2 Background
Matrix-variate Normal Distribution
Unimodal–bimodal Normal (UBN) Distribution
Skewed Matrix-Variate UBN (MatUBN) Distribution
3 Proposed Regression Model
Model Formulation
Extending the Model Using Envelope Formulation
4 Simulation Study
5 Applications
6 Concluding
References
Multivariate Functional Singular Spectrum Analysis: A Nonparametric Approach for Analyzing Multivariate Functional Time Series
1 Background
General Scheme of Univariate Singular Spectrum Analysis
General Scheme of Functional Singular Spectrum Analysis
General Scheme of Multivariate Singular Spectrum Analysis
2 General Scheme of Multivariate Functional Singular Spectrum Analysis
Preliminaries and Notations
Multivariate Functional Singular Spectrum Analysis Algorithm
Computer Implementation Strategy
3 Generalizing Multivariate Singular Spectrum Analysis to Multivariate Functional Singular Spectrum Analysis
From Horizontal Multivariate Singular Spectrum Analysis to Horizontal Multivariate Functional Singular Spectrum Analysis
From Vertical Multivariate Singular Spectrum Analysis to Vertical Multivariate Functional Singular Spectrum Analysis
4 Numerical Studies
Simulation Study
Application to NDVI Images and Intraday Temperature Data
Application to Remote Sensing Density Curves
5 Discussion
References
Compositional Data Analysis—Linear Algebra, Visualization and Interpretation
1 Introduction
2 Basic Algebraic Definitions and Results
Logratio Transformations and Associated Pattern Matrices
Inverting Logratio Transformations
Log-Contrasts
3 Logratio Visualization
4 Summary and Discussion
References
Multivariate Count Data Regression Models and Their Applications
1 Introduction
2 Review of T-R{W} Family of Distributions
Sub-Families of Discrete T-R{W} Distributions
The Family of Generalized Geometric Distributions
3 Bivariate and Multivariate T-geometric{W} Families
Sarmanov Family of Bivariate and Multivariate Distributions
Bivariate and Multivariate T-geometric{W} Families
Multivariate T-geometric{W} Regression Model
4 Inference on Bivariate and Multivariate T-geometric{W} Regression Models
Test for Independence
Test for Dispersion
Test to Compare Nested and Non-nested Models
Goodness-Of-Fit Statistics
5 Application
Sex Partners Data
Inmates Profiling Data
6 Summary and Conclusions
7 Appendix
References
A Generalized Multivariate Gamma Distribution
1 Introduction
2 The Multivariate Gamma Distribution
3 Marginal Distributions
4 Factorizations
5 Joint Moments
6 Moment Generating Function
7 Entropies
8 Estimation
9 Simulation
10 Conclusion
References
Aspects of High-Dimensional Methodology and Bayesian Learning
A Comparison of Different Clustering Approaches for High-Dimensional Presence-Absence Data
1 Introduction
2 Data and Preprocessing
3 Clustering Methods
Latent Class Analysis
Methods Operating on Distances
Methods Operating on Euclidean Data
4 The Simulation
Data Generation
Scenarios
5 Results
General Results
More Detailed Insight
6 Conclusions
References
High-Dimensional Feature Selection for Logistic Regression Using Blended Penalty Functions
1 Introduction
2 Penalised GLM with the MEnet Penalty
Modified Elastic-Net Penalty
Penalised Likelihood Function
Reforming of the MEnet Penalty Term
Parameter Estimation
3 Simulation Study
4 Colon Cancer Classification
5 Conclusion and Future Work
References
A Generalized Quadratic Garrote Approach Towards Ridge Regression Analysis
1 Introduction
2 Quadratic Garrote
Variance and Bias
3 Simulation Study
Sparse Setting
Nearly-Sparse Setting
High Dimensional Setting
4 Example: The Boston Housing Dataset
5 Discussion
References
High-Dimensional Nonlinear Optimization Problem in Semiparametric Regression Model
1 Introduction
2 Differencing Approach to Approximate the Model
How Does the Approximation Work?
3 Ridge Estimation of Sparse Semiparametric Regression Model
4 Least Absolute Shrinkage and Selection Operator Approach
5 A Mathematical Heuristic Algorithm for Estimation of High-Dimensional SRM
6 Numerical studies
Application to Riboflavin Production Data Set
Some Simulation Studies
7 Summary and Conclusions
References
Frontiers in Robust Analysis and Mixture Modelling
Parsimonious Finite Mixtures of Matrix-Variate Regressions
1 Introduction
2 Methodology
Parsimonious Matrix-Variate FMR
Maximum Likelihood Estimation
Computational and Operative Details
3 Data Analyses
Simulated Data
Real Data
4 Conclusions
References
Robust Multivariate Modelling for Heterogeneous Data Sets with Mixtures of Multivariate Skew Laplace Normal Distributions
1 Introduction
2 The MSLN Distribution
3 Finite Mixtures of the MSLN Distributions
ML Estimation
Initial Values
The Empirical Information Matrix
4 Applications
Simulation Study
An Illustrative Real Data Example: Old Faithful Geyser Data Set
5 Conclusions
References
Robust Estimation Through Preliminary Testing Based on the LAD-LASSO
1 Introduction
2 LAD-LASSO Estimator
3 Improvement Strategy on LAD
4 Numerical Study
Synthetic Data Analysis
Gross Domestic Product Data Analysis
5 Codes
6 Conclusion
References