توضیحاتی در مورد کتاب Intelligent Beam Control in Accelerators
نام کتاب : Intelligent Beam Control in Accelerators
عنوان ترجمه شده به فارسی : کنترل هوشمند پرتو در شتاب دهنده ها
سری : Particle Acceleration and Detection
نویسندگان : Zheqiao Geng, Stefan Simrock
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 164
ISBN (شابک) : 3031285964 , 9783031285967
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Contents
Abbreviations
1 Introduction
1.1 Overview of Beam Controls
1.1.1 Beam Control Tasks
1.1.2 Beam Control Methods
1.2 Beam Control System
1.2.1 Hierarchy of Beam Control System
1.2.2 Beam Device Layer
1.2.3 Instrumentation Layer
1.2.4 Global Control Layer
1.2.5 Global Optimization Layer
1.2.6 Role of Machine Learning
1.2.7 SwissFEL Two-Bunch Operation
References
2 Beam Feedback Control
2.1 Beam Feedback Control Overview
2.2 Beam Feedback Control Analysis
2.2.1 Plant Characteristics
2.2.2 Static and Dynamical Controllers
2.2.3 Local and Global Control Loops
2.3 Beam Response Matrix
2.3.1 Response Matrix Identification
2.3.2 Singular Value Decomposition
2.3.3 Response Matrix Uncertainties
2.4 Static Linear Feedback Controller Design
2.4.1 Difficulties in Response Matrix Inversion
2.4.2 Matrix Inversion with SVD
2.4.3 Matrix Inversion with Least-Square Method
2.4.4 Robust Control Design
2.4.5 SwissFEL Bunch2 Feedback Control
2.5 Further Reading and Outlook
References
3 Beam Optimization
3.1 Beam Optimization Overview
3.1.1 Optimization Problems in Beam Controls
3.1.2 Formulation of Optimization Problems
3.1.3 Noise in Online Optimization Problems
3.2 Optimization Algorithms
3.2.1 Overview of Optimization Algorithms
3.2.2 Test Function
3.2.3 Spontaneous Correlation Optimization
3.2.4 Random Walk Optimization
3.2.5 Robust Conjugate Direction Search
3.2.6 Genetic Algorithm
3.2.7 Particle Swarm Optimization
3.2.8 Comparison of Optimization Algorithms
3.3 Beam Optimization Examples and Tools
3.3.1 Practical Considerations
3.3.2 FEL Optimization with SCO
3.3.3 Operating Point Changing
3.3.4 Optimization Software Tools
3.4 Further Reading and Outlook
References
4 Machine Learning for Beam Controls
4.1 Introduction to Machine Learning
4.1.1 Machine Learning Algorithms
4.1.2 Machine Learning Models
4.1.3 Machine Learning Workflow
4.1.4 Machine Learning Processes
4.2 Accelerator Modeling with Machine Learning
4.2.1 Neural Network Regression Model
4.2.2 Gaussian Process Regression Model
4.3 Applications of Machine Learning Models in Beam Controls
4.3.1 Surrogate Models of Beam Responses
4.3.2 Response Matrix Estimation with Neural Network Surrogate Models
4.3.3 Beam Optimization with Neural Network Surrogate Models
4.3.4 Feedforward Control with Neural Network Surrogate Models
4.3.5 Beam Optimization with GP Surrogate Models
4.4 Feedback Control with Reinforcement Learning
4.4.1 Introduction to Reinforcement Learning
4.4.2 Feedback Controller Design with Natural Actor-Critic Algorithm
4.4.3 Example: RF Cavity Controller Design
4.4.4 Example: Static Feedback Controller Design
4.5 Further Reading and Outlook
References
Index