توضیحاتی در مورد کتاب Internet of Things Security and Privacy: Practical and Management Perspectives
نام کتاب : Internet of Things Security and Privacy: Practical and Management Perspectives
ویرایش : 1
عنوان ترجمه شده به فارسی : امنیت و حریم خصوصی اینترنت اشیا: دیدگاه های عملی و مدیریتی
سری :
نویسندگان : Ali Ismail Awad (editor), Atif Ahmad (editor), Kim-Kwang Raymond Choo (editor), Saqib Hakak (editor)
ناشر : CRC Press
سال نشر : 2023
تعداد صفحات : 259
ISBN (شابک) : 1032057718 , 9781032057712
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 9 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
Chapter 1 Cybersecurity Risk Assessment in Advanced Metering Infrastructure
1.1 Introduction
1.2 Preliminaries
1.2.1 Advanced Metering Infrastructure
1.2.2 AMI Components
1.2.3 AMI Tiers
1.2.4 Information Security Risk Assessment
1.3 Implementation of the AMI System\'s Risk Assessment
1.3.1 Risk Identification Phase for the AMI System
1.3.2 AMI Vulnerabilities
1.3.3 Risk Profiling Phase for the AMI System
1.3.4 Risk Treatment Phase for the AMI System
1.4 Discussion and Recommendations
1.4.1 Recommendations
1.5 Conclusion
Acknowledgment
References
Chapter 2 A Generative Neural Network for Improving Metamorphic Malware Detection in IoT Mobile Devices
2.1 Introduction
2.2 Background
2.2.1 Machine Learning
2.2.2 Deep Learning Malware Detection
2.2.3 Adversarial Machine Learning
2.2.4 Generative Adversarial Networks
2.2.5 Related Work
2.3 Methodology
2.3.1 Dataset
2.3.2 Dynamic Analysis
2.3.3 Data Preparation
2.3.4 Image Generation
2.3.5 Adversarial Samples
2.3.6 Convolutional Neural Network (CNN)
2.4 Experimental Design
2.4.1 Experimental Setup
2.4.2 Behavior Feature Extraction
2.4.3 Words to Images
2.4.4 Synthetic Images
2.4.5 Image Classification
2.5 Results and Discussion
2.5.1 Assessing the Evasive Effectiveness of the Generated Samples Using a CNN Classifier
2.5.2 Assessing the Effectiveness of the CNN Classifier with a Novel Dataset Including a Newly Generated Batch of Malicious Samples for Each Family Produced by the DCGAN
2.5.3 Evaluation
2.6 Conclusion
Notes
References
Chapter 3 A Physical-Layer Approach for IoT Information Security During Interference Attacks
3.1 Introduction
3.2 Chapter Contributions
3.3 Related Work
3.4 IoT Information Security
3.4.1 Background
3.4.2 System Model
3.5 Zero-Determinant Strategies
3.6 Game-Theoretic Transmission Strategy
3.6.1 Transmission Probability
3.6.2 Transmission Strategy
3.7 Extension to Multiple IoT Users
3.7.1 Zero-Determinant Strategies
3.7.2 Generalized Transmission Strategy
3.8 Numerical Results
3.8.1 Model Dynamics
3.8.2 Simulated Use Cases
3.9 Discussions
3.9.1 About the Game-Theoretic Approach
3.9.2 Conclusions
References
Chapter 4 Policy-Driven Security Architecture for Internet of Things (IoT) Infrastructure
4.1 Introduction
4.2 Related Work
4.2.1 Policies and SDN
4.2.2 Automatic Device Provisioning
4.2.3 Secure Device Provisioning
4.2.4 Machine Learning-based Classification of Devices
4.2.5 IoT Security and Attacks
4.3 Fundamentals of Policy-Based Network and Security Management
4.3.1 Policy
4.3.2 Policy-Based Network and Security Management
4.3.3 Policy-Based Management Architecture
4.3.4 Benefits of a Policy-Based Management Architecture
4.4 IoT Network Scenario
4.4.1 Types of Devices and Device Ontology
4.5 Policy-Driven Security Architecture
4.5.1 Device Provisioning?
4.5.2 Secure Smart Device Provisioning and Monitoring Service (SDPM)
4.5.3 Security Provisioning Protocol
4.5.4 Digital Twin
4.5.5 Policy-Based Security Application
4.6 Prototype Implementation
4.6.1 Network Setup
4.6.2 Security Analysis
4.6.3 Performance Evaluation
4.7 Discussion and Open Issues
4.8 Conclusion
References
Chapter 5 A Privacy-Sensitive, Situation-Aware Description Model for IoT
5.1 Introduction
5.2 Background
5.2.1 Privacy in IoT in-Brief
5.2.2 Definitions
5.2.3 When MDA Meets IoT
5.2.4 WoT TD In-Brief
5.2.5 Case Study
5.3 Privacy-Sensitive and Situation-Aware Thing Description
5.3.1 Overview
5.3.2 Step 1: SituationPrivacy Metamodel Definition
5.3.3 Step 2: SituationPrivacyWoTTD Metamodel Definition
5.3.4 Step 3: SituationPrivacyWoTTD Model Generation
5.4 Implementation
5.4.1 Model Transformation
5.4.2 Simulation
5.4.3 Evaluation
5.5 Conclusion
Appendix 1
Notes
References
Chapter 6 Protect the Gate: A Literature Review of the Security and Privacy Concerns and Mitigation Strategies Related to IoT Smart Locks
6.1 Introduction
6.1.1 Background
6.1.2 Architecture
6.1.3 Capabilities
6.1.4 Access Control
6.1.5 Authentication and Authorization
6.2 The Privacy and Security of Smart Locks
6.2.1 Smart Locks Privacy and Security From the Perspective of Researchers
6.2.2 Smart Homes Privacy and Security From the Perspective of the End User
6.3 Research Gaps
6.4 Conclusion
References
Chapter 7 A Game-Theoretic Approach to Information Availability in IoT Networks
7.1 Introduction
7.2 Related Work
7.3 System Model
7.3.1 Spectrum-Sharing Cognitive Systems
7.3.2 Problem Statement
7.3.3 Primary Outage Probability
7.4 Zero-Determinant Strategies
7.5 Game-Theoretic Strategy for IoT Transmission
7.5.1 Uncoordinated Transmission Strategy
7.5.2 Special Cases
7.5.3 Performance Analysis
7.6 Extension to Multiple Users
7.7 Numerical Results
7.8 Discussions and Conclusions
References
Chapter 8 Review on Variants of Restricted Boltzmann Machines and Autoencoders for Cyber-Physical Systems
8.1 Introduction to RBMs and Autoencoding
8.2 Background
8.2.1 Targeted Problems Using RBM’s and Autoencoders
8.2.2 Techniques Used for Cyber-Physical Systems Using RBMs and Autoencoders
8.2.3 Detecting Network Intrusions to Ensure the Security of CPS in IoT Devices
8.3 Malware Attack Detection
8.4 Fraud and Anomaly Detection
8.5 Breakthroughs in CPS and their Findings
8.5.1 Aim of a CPS-Based System
8.5.2 Breakthroughs in CPS-Based Systems
8.6 Ensuring CPS is Critical in the Modern World
8.7 Evolution of CPS and its Associated Impacts
8.8 Conclusion
Acknowledgment
References
Chapter 9 Privacy-Preserving Analytics of IoT Data Using Generative Models
9.1 Introduction
9.2 IoT Architecture and Applications
9.3 Limitations and Challenges
9.4 IoT Privacy: Definitions and Types
9.5 GAN Framework
9.6 Research Objectives
9.6.1 Limitation of the Scope
9.7 Literature Review
9.7.1 Data Anonymizing
9.7.2 Authentication and Authorization
9.7.3 Edge Computing and Plug-In Architecture
9.7.4 Using Generative Adversarial Network (GAN) in Privacy Data Analytics
9.8 Overall Research Design
9.9 Methodology
9.9.1 Data Preparation
9.10 Data Analysis and Interpretation
9.10.1 Privacy Measures
9.10.2 Accuracy Measures
9.10.3 Incorrect Classification
9.10.4 F-Measure
9.10.5 Privacy
9.10.6 Privacy Results Using Different Number of Epochs
9.11 Conclusion and Future Work
References
Index