توضیحاتی در مورد کتاب Interpretable AI: Building explainable machine learning systems
نام کتاب : Interpretable AI: Building explainable machine learning systems
ویرایش : 1
عنوان ترجمه شده به فارسی : هوش مصنوعی قابل تفسیر: ساخت سیستمهای یادگیری ماشینی قابل توضیح
سری :
نویسندگان : Ajay Thampi
ناشر : Manning Publications
سال نشر : 2022
تعداد صفحات : 330
ISBN (شابک) : 161729764X , 9781617297649
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 5 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Interpretable AI
brief content
contents
preface
acknowledgments
about this book
Who should read this book
How this book is organized: a roadmap
About the code
liveBook discussion forum
about the author
about the cover illustration
Part 1: Interpretability basics
Chapter 1: Introduction
1.1 Diagnostics+ AI—an example AI system
1.2 Types of machine learning systems
1.2.1 Representation of data
1.2.2 Supervised learning
1.2.3 Unsupervised learning
1.2.4 Reinforcement learning
1.2.5 Machine learning system for Diagnostics+ AI
1.3 Building Diagnostics+ AI
1.4 Gaps in Diagnostics+ AI
1.4.1 Data leakage
1.4.2 Bias
1.4.3 Regulatory noncompliance
1.4.4 Concept drift
1.5 Building a robust Diagnostics+ AI system
1.6 Interpretability vs. explainability
1.6.1 Types of interpretability techniques
1.7 What will I learn in this book?
1.7.1 What tools will I be using in this book?
1.7.2 What do I need to know before reading this book?
Chapter 2: White-box models
2.1 White-box models
2.2 Diagnostics+—diabetes progression
2.3 Linear regression
2.3.1 Interpreting linear regression
2.3.2 Limitations of linear regression
2.4 Decision trees
2.4.1 Interpreting decision trees
2.4.2 Limitations of decision trees
2.5 Generalized additive models (GAMs)
2.5.1 Regression splines
2.5.2 GAM for Diagnostics+ diabetes
2.5.3 Interpreting GAMs
2.5.4 Limitations of GAMs
2.6 Looking ahead to black-box models
Part 2: Interpreting model processing
Chapter 3: Model-agnostic methods: Global interpretability
3.1 High school student performance predictor
3.1.1 Exploratory data analysis
3.2 Tree ensembles
3.2.1 Training a random forest
3.3 Interpreting a random forest
3.4 Model-agnostic methods: Global interpretability
3.4.1 Partial dependence plots
3.4.2 Feature interactions
Chapter 4: Model-agnostic methods: Local interpretability
4.1 Diagnostics+ AI: Breast cancer diagnosis
4.2 Exploratory data analysis
4.3 Deep neural networks
4.3.1 Data preparation
4.3.2 Training and evaluating DNNs
4.4 Interpreting DNNs
4.5 LIME
4.6 SHAP
4.7 Anchors
Chapter 5: Saliency mapping
5.1 Diagnostics+ AI: Invasive ductal carcinoma detection
5.2 Exploratory data analysis
5.3 Convolutional neural networks
5.3.1 Data preparation
5.3.2 Training and evaluating CNNs
5.4 Interpreting CNNs
5.4.1 Probability landscape
5.4.2 LIME
5.4.3 Visual attribution methods
5.5 Vanilla backpropagation
5.6 Guided backpropagation
5.7 Other gradient-based methods
5.8 Grad-CAM and guided Grad-CAM
5.9 Which attribution method should I use?
Part 3: Interpreting model representations
Chapter 6: Understanding layers and units
6.1 Visual understanding
6.2 Convolutional neural networks: A recap
6.3 Network dissection framework
6.3.1 Concept definition
6.3.2 Network probing
6.3.3 Quantifying alignment
6.4 Interpreting layers and units
6.4.1 Running network dissection
6.4.2 Concept detectors
6.4.3 Concept detectors by training task
6.4.4 Visualizing concept detectors
6.4.5 Limitations of network dissection
Chapter 7: Understanding semantic similarity
7.1 Sentiment analysis
7.2 Exploratory data analysis
7.3 Neural word embeddings
7.3.1 One-hot encoding
7.3.2 Word2Vec
7.3.3 GloVe embeddings
7.3.4 Model for sentiment analysis
7.4 Interpreting semantic similarity
7.4.1 Measuring similarity
7.4.2 Principal component analysis (PCA)
7.4.3 t-distributed stochastic neighbor embedding (t-SNE)
7.4.4 Validating semantic similarity visualizations
Part 4: Fairness and bias
Chapter 8: Fairness and mitigating bias
8.1 Adult income prediction
8.1.1 Exploratory data analysis
8.1.2 Prediction model
8.2 Fairness notions
8.2.1 Demographic parity
8.2.2 Equality of opportunity and odds
8.2.3 Other notions of fairness
8.3 Interpretability and fairness
8.3.1 Discrimination via input features
8.3.2 Discrimination via representation
8.4 Mitigating bias
8.4.1 Fairness through unawareness
8.4.2 Correcting label bias through reweighting
8.5 Datasheets for datasets
Chapter 9: Path to explainable AI
9.1 Explainable AI
9.2 Counterfactual explanations
appendix A: Getting set up
A.1 Python
A.2 Git code repository
A.3 Conda environment
A.4 Jupyter notebooks
A.5 Docker
appendix B: PyTorch
B.1 What is PyTorch?
B.2 Installing PyTorch
B.3 Tensors
B.3.1 Data types
B.3.2 CPU and GPU tensors
B.3.3 Operations
B.4 Dataset and DataLoader
B.5 Modeling
B.5.1 Automatic differentiation
B.5.2 Model definition
B.5.3 Training
index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X