Interpretable Machine Learning

دانلود کتاب Interpretable Machine Learning

58000 تومان موجود

کتاب یادگیری ماشینی قابل تفسیر نسخه زبان اصلی

دانلود کتاب یادگیری ماشینی قابل تفسیر بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 9


توضیحاتی در مورد کتاب Interpretable Machine Learning

نام کتاب : Interpretable Machine Learning
عنوان ترجمه شده به فارسی : یادگیری ماشینی قابل تفسیر
سری :
نویسندگان :
ناشر : lulu.com
سال نشر : 2021
تعداد صفحات : 368
ISBN (شابک) : 0244768528 , 9780244768522
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 14 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Interpretable-Machine-Learning-by-Christoph-Molnar
Summary
Preface by the Author
1 Introduction
1.1 Story Time
1.2 What Is Machine Learning?
1.3 Terminology
2 Interpretability
2.1 Importance of Interpretability
2.2 Taxonomy of Interpretability Methods
2.3 Scope of Interpretability
2.4 Evaluation of Interpretability
2.5 Properties of Explanations
2.6 Human-friendly Explanations
3 Datasets
3.1 Bike Rentals (Regression)
3.2 YouTube Spam Comments (Text Classification)
3.3 Risk Factors for Cervical Cancer (Classification)
4 Interpretable Models
4.1 Linear Regression
4.2 Logistic Regression
4.3 GLM, GAM and more
4.4 Decision Tree
4.5 Decision Rules
4.6 RuleFit
4.7 Other Interpretable Models
5 Model-Agnostic Methods
5.1 Partial Dependence Plot (PDP)
5.2 Individual Conditional Expectation (ICE)
5.3 Accumulated Local Effects (ALE) Plot
5.4 Feature Interaction
5.5 Permutation Feature Importance
5.6 Global Surrogate
5.7 Local Surrogate (LIME)
5.8 Scoped Rules (Anchors)
5.9 Shapley Values
5.10 SHAP (SHapley Additive exPlanations)
6 Example-Based Explanations
6.1 Counterfactual Explanations
6.2 Adversarial Examples
6.3 Prototypes and Criticisms
6.4 Influential Instances
7 Neural Network Interpretation
7.1 Learned Features
7.2 Pixel Attribution (Saliency Maps)
7.3 Detecting Concepts
8 A Look into the Crystal Ball
8.1 The Future of Machine Learning
8.2 The Future of Interpretability
9 Contribute to the Book
10 Citing this Book
11 Translations
12 Acknowledgements
References
R Packages Used for Examples




پست ها تصادفی