توضیحاتی در مورد کتاب Introduction to Imprecise Probabilities
نام کتاب : Introduction to Imprecise Probabilities
عنوان ترجمه شده به فارسی : مقدمه ای بر احتمالات غیر دقیق
سری :
نویسندگان : Augustin. Thomas(Editor), Coolen. Frank P A(Editor), Cooman. Gert de(Editor), Troffaes. Matthias C M(Editor)
ناشر : Wiley
سال نشر : 2014
تعداد صفحات : 447
ISBN (شابک) : 9780470973813 , 0470973811
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 4 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover......Page 1
Title Page......Page 5
Copyright......Page 6
Contents......Page 7
Introduction......Page 15
A brief outline of this book......Page 17
Guide to the reader......Page 19
Contributors......Page 23
Acknowledgements......Page 29
1.1 Introduction......Page 31
1.2.1 Rationality criteria......Page 32
1.2.2 Assessments avoiding partial or sure loss......Page 33
1.2.3 Coherent sets of desirable gambles......Page 34
1.2.5 Desirability relative to subspaces with arbitrary vector orderings......Page 35
1.3.1 Gamble space transformations......Page 36
1.3.2 Derived coherent sets of desirable gambles......Page 37
1.3.4 Marginal sets of desirable gambles......Page 38
1.3.5 Combining sets of desirable gambles......Page 39
1.4 Partial preference orders......Page 41
1.4.2 Nonstrict preference......Page 42
1.4.3 Nonstrict preferences implied by strict ones......Page 44
1.4.4 Strict preferences implied by nonstrict ones......Page 45
1.5 Maximally committal sets of strictly desirable gambles......Page 46
1.6.1 Linear previsions......Page 48
1.6.2 Credal sets......Page 49
1.6.3 To lower and upper previsions......Page 51
1.6.4 Simplified variants of desirability......Page 52
1.6.5 From lower previsions......Page 53
1.6.6 Conditional lower previsions......Page 55
1.7 Further reading......Page 56
Acknowledgements......Page 57
2.1 Introduction......Page 58
2.2 Coherent lower previsions......Page 59
2.2.1 Avoiding sure loss and coherence......Page 61
2.2.2 Linear previsions......Page 65
2.2.3 Sets of desirable gambles......Page 69
2.2.4 Natural extension......Page 70
2.3 Conditional lower previsions......Page 72
2.3.1 Coherence of a finite number of conditional lower previsions......Page 75
2.3.2 Natural extension of conditional lower previsions......Page 77
2.3.3 Coherence of an unconditional and a conditional lower prevision......Page 79
2.3.4 Updating with the regular extension......Page 82
2.4.1 The work of Williams......Page 83
2.4.3 The work of Weichselberger......Page 84
Acknowledgements......Page 85
3.1 Introduction......Page 86
3.2 Irrelevance and independence......Page 87
3.2.1 Epistemic irrelevance......Page 89
3.2.2 Epistemic independence......Page 91
3.2.3 Envelopes of independent precise models......Page 93
3.2.4 Strong independence......Page 95
3.2.5 The formalist approach to independence......Page 96
3.3 Invariance......Page 97
3.3.1 Weak invariance......Page 98
3.3.2 Strong invariance......Page 99
3.4 Exchangeability......Page 101
3.4.1 Representation theorem for finite sequences......Page 102
3.4.2 Exchangeable natural extension......Page 104
3.4.3 Exchangeable sequences......Page 105
3.5.3 Exchangeability......Page 107
Acknowledgements......Page 108
4.1 Introduction......Page 109
4.2 Capacities and n-monotonicity......Page 110
4.3 2-monotone capacities......Page 111
4.5 ∞-monotone capacities......Page 112
4.5.2 Simple support functions......Page 113
4.6.1 Possibility distributions......Page 114
4.6.2 Fuzzy intervals......Page 116
4.6.3 Clouds......Page 117
4.6.4 p-boxes......Page 118
4.7.1 Pari-mutuel......Page 119
4.7.3 Linear-vacuous......Page 120
4.8 Summary......Page 121
Chapter 5 Other uncertainty theories based on capacities......Page 123
5.1.1 Boolean possibility theory and modal logic......Page 125
5.2 From imprecise probabilities to belief functions and possibility theory......Page 127
5.2.1.1 Mass functions......Page 128
5.2.1.3 Belief functions and lower probabilities......Page 129
5.2.2.1 Possibility distributions......Page 130
5.2.2.2 Possibility and necessity measures......Page 131
5.3 Discrepancies between uncertainty theories......Page 132
5.3.1 Objectivist vs. Subjectivist standpoints......Page 133
5.3.2 Discrepancies in conditioning......Page 134
5.3.3 Discrepancies in notions of independence......Page 137
5.3.4 Discrepancies in fusion operations......Page 139
5.4 Further reading......Page 142
6.1 Introduction......Page 144
6.2 A law of large numbers......Page 145
6.3 A general forecasting protocol......Page 148
6.4 The axiom of continuity......Page 152
6.5 Doob\'s argument......Page 154
6.6 Limit theorems of probability......Page 157
6.7 Lévy\'s zero-one law......Page 158
6.8 The axiom of continuity revisited......Page 159
6.9 Further reading......Page 162
Acknowledgements......Page 164
Chapter 7 Statistical inference......Page 165
7.1.1 What is statistical inference?......Page 166
7.1.2 (Parametric) statistical models and i.i.d. samples......Page 167
7.1.3 Basic tasks and procedures of statistical inference......Page 169
7.1.4 Some methodological distinctions......Page 170
7.1.5 Examples: Multinomial and normal distribution......Page 171
7.2.1 Model and data imprecision; sensitivity analysis and ontological views on imprecision......Page 173
7.2.2 The robustness shock, sensitivity analysis......Page 174
7.2.4 The law of decreasing credibility......Page 175
7.2.5 Imprecise sampling models: Typical models and motives......Page 176
7.3.1 Most common classes of models and notation......Page 177
7.3.2 Imprecise parametric statistical models and corresponding i.i.d. samples......Page 178
7.4 Generalized Bayesian inference......Page 179
7.4.1.1 Conjugate families of distributions......Page 180
7.4.2.1 Robust Bayes and imprecise probabilities......Page 184
7.4.3.1 The general model......Page 185
7.4.3.2 The IDM and other prior near-ignorance models......Page 189
7.4.3.3 Substantial prior information and sensitivity to prior-data conflict......Page 191
7.4.4 Some further comments and a brief look at other models for generalized Bayesian inference......Page 194
7.5 Frequentist statistics with imprecise probabilities......Page 195
7.5.1 The nonrobustness of classical frequentist methods......Page 196
7.5.2.2 Globally least favourable pairs and Huber-Strassen theory......Page 199
7.5.3 Towards a frequentist estimation theory under imprecise probabilities-some basic criteria and first results......Page 201
7.5.3.1 Basic traditional criteria......Page 202
7.5.3.3 Minimum distance estimation......Page 203
7.5.4 A brief outlook on frequentist methods......Page 204
7.6.1 Overview......Page 205
7.6.2 Applications and challenges......Page 207
7.7 A brief sketch of some further approaches and aspects......Page 208
7.8 Data imprecision, partial identification......Page 209
7.8.1.1 The basic setting......Page 210
7.8.2 Cautious data completion......Page 211
7.8.3.1 (Partial) Identifiability, identification regions......Page 213
7.8.3.2 Partial identification and misclassification......Page 215
7.8.4.2 A brief outlook on further developments in the literature......Page 216
7.9 Some general further reading......Page 217
7.10 Some general challenges......Page 218
Acknowledgements......Page 219
8.1 Non-sequential decision problems......Page 220
8.1.1 Choosing from a set of gambles......Page 221
8.1.2 Choice functions for coherent lower previsions......Page 222
8.2 Sequential decision problems......Page 227
8.2.1 Static sequential solutions: Normal form......Page 228
8.2.2 Dynamic sequential solutions: Extensive form......Page 229
8.3.1 Ellsberg\'s paradox......Page 232
8.3.2 Robust Bayesian statistics......Page 235
9.1 Introduction......Page 237
9.2.1 Definition and relation with lower previsions......Page 238
9.2.2 Marginalization and conditioning......Page 240
9.2.3 Composition......Page 242
9.3 Independence......Page 243
9.4 Credal networks......Page 245
9.4.1 Nonseparately specified credal networks......Page 247
9.5.1 Credal networks updating......Page 250
9.5.2 Modelling and updating with missing data......Page 251
9.5.3 Algorithms for credal networks updating......Page 253
9.5.4 Inference on credal networks as a multilinear programming task......Page 254
9.6 Further reading......Page 256
Acknowledgements......Page 259
10.1 Introduction......Page 260
10.2 Naive Bayes......Page 261
10.2.1 Derivation of naive Bayes......Page 262
10.3.1 Checking Credal-dominance......Page 263
10.3.2 Particular behaviours of NCC......Page 265
10.3.3 NCC2: Conservative treatment of missing data......Page 266
10.4.1 Lazy naive credal classifier......Page 267
10.4.2 Credal model averaging......Page 268
10.4.3 Profile-likelihood classifiers......Page 269
10.4.4 Tree-augmented networks (TAN)......Page 270
10.5.1 Uncertainty measures on credal sets: The maximum entropy function......Page 272
10.5.2 Obtaining conditional probability intervals with the imprecise Dirichlet model......Page 275
10.5.3 Classification procedure......Page 276
10.6 Metrics, experiments and software......Page 279
10.7.2 Experiments......Page 281
10.7.3 Experiments comparing conditional probabilities of the class......Page 283
Acknowledgements......Page 287
11.1.1 Basic definitions......Page 288
11.1.2 Precise Markov chains......Page 289
11.2 Event-driven random processes......Page 291
11.3 Imprecise Markov chains......Page 293
11.3.1 From precise to imprecise Markov chains......Page 294
11.3.2 Imprecise Markov models under epistemic irrelevance......Page 295
11.3.3 Imprecise Markov models under strong independence......Page 298
11.3.4 When does the interpretation of independence (not) matter?......Page 300
11.4.1 Metric properties of imprecise probability models......Page 302
11.4.2 The Perron-Frobenius theorem......Page 303
11.4.3 Invariant distributions......Page 304
11.4.5 Coefficients of ergodicity for imprecise Markov chains......Page 305
11.5 Further reading......Page 307
12.1 Introduction......Page 309
12.2 Imprecise previsions and betting......Page 310
12.3 Imprecise previsions and risk measurement......Page 312
12.3.1 Risk measures as imprecise previsions......Page 313
12.3.2 Coherent risk measures......Page 314
12.3.3 Convex risk measures (and previsions)......Page 315
12.4 Further reading......Page 319
13.1 Introduction......Page 321
13.2 Probabilistic dimensioning in a simple example......Page 325
13.3 Random set modelling of the output variability......Page 328
13.4 Sensitivity analysis......Page 330
13.5 Hybrid models......Page 331
13.6 Reliability analysis and decision making in engineering......Page 332
13.7 Further reading......Page 333
14.1 Introduction......Page 335
14.2 Stress-strength reliability......Page 336
14.3 Statistical inference in reliability and risk......Page 340
14.4 Nonparametric predictive inference in reliability and risk......Page 342
14.5 Discussion and research challenges......Page 347
15.1 Methods and issues......Page 348
15.2 Evaluating imprecise probability judgements......Page 352
15.3 Factors affecting elicitation......Page 354
15.4 Matching methods with purposes......Page 357
15.5 Further reading......Page 358
16.2 Natural extension......Page 359
16.2.1 Conditional lower previsions with arbitrary domains......Page 360
16.2.2 The Walley-Pelessoni-Vicig algorithm......Page 361
16.2.3 Choquet integration......Page 362
16.2.5 Linear-vacuous mixture......Page 364
16.3.2 Maximality......Page 365
16.3.3 E-admissibility......Page 366
16.3.4 Interval dominance......Page 367
References......Page 368
Author index......Page 405
Subject index......Page 415
Wiley Series in Probability and Statistics......Page 435