توضیحاتی در مورد کتاب Introduction to Soergel Bimodules
نام کتاب : Introduction to Soergel Bimodules
عنوان ترجمه شده به فارسی : مقدمه ای بر Bimodules Soergel
سری : RSME Springer Series 5
نویسندگان : Ben Elias, Shotaro Makisumi, Ulrich Thiel, Geordie Williamson
ناشر : Springer
سال نشر : 2020
تعداد صفحات : 592
ISBN (شابک) : 9783030488253 , 9783030488260
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 27 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
How to Read This Book
About This Book and Acknowledgements
Leitfaden
Contents
Contributors
Part I The Classical Theory of Soergel Bimodules
1 How to Think About Coxeter Groups
1.1 Coxeter Systems and Examples
1.1.1 Definition of a Coxeter System
1.1.2 Example: Type A
1.1.3 Example: Type B
1.1.4 Example: Type D
1.1.5 Example: Dihedral Groups
1.1.6 Coxeter Groups and Reflections
1.1.7 The Geometric Representation and the Classification of Finite Coxeter Groups
1.1.8 Crystallographic Coxeter Systems
1.2 Coxeter Group Fundamentals
1.2.1 The Length Function
1.2.2 The Descent Set
1.2.3 The Exchange Condition
1.2.4 The Longest Element
1.2.5 Matsumoto's Theorem
1.2.6 Bruhat Order
1.2.7 Additional Exercises
2 Reflection Groups and Coxeter Groups
2.1 Reflections and Affine Reflections
2.2 Affine Reflection Groups
2.3 Affine Reflection Groups are Coxeter Groups
2.4 Expressions and Strolls
2.5 Classification of Affine Reflection Groups
2.6 The Coxeter Complex
3 The Hecke Algebra and Kazhdan–Lusztig Polynomials
3.1 The Hecke Algebra
3.1.1 The Standard Basis
3.1.2 Inversion
3.2 The Kazhdan–Lusztig Basis
3.2.1 The Standard Form on H
3.3 Existence of the Kazhdan–Lusztig Basis
3.3.1 A Motivating Example
3.3.2 Construction of the Kazhdan–Lusztig Basis
3.3.3 The Kazhdan–Lusztig Presentation
3.3.4 Deodhar's Formula
4 Soergel Bimodules
4.1 Gradings
4.2 Polynomials
4.2.1 Invariant Polynomials
4.3 Demazure Operators
4.4 Bimodules and Tensor Products
4.5 Bott–Samelson Bimodules
4.6 Soergel Bimodules
4.7 Examples of Soergel Bimodules
4.8 A First Glimpse of Categorification
5 The ``Classical'' Theory of Soergel Bimodules
5.1 Twisted Actions
5.2 Standard Bimodules
5.3 Soergel Bimodules and Standard Filtrations
5.4 Localization
5.5 Soergel's Categorification Theorem
5.6 A Technical Wrinkle
5.7 Realizations of a Coxeter System
5.8 More Technicalities
6 Sheaves on Moment Graphs
6.1 Roots in the Geometric Representation
6.2 Bruhat Graphs
6.3 Moment Graphs
6.4 Sheaves on Moment Graphs
6.5 The Braden–MacPherson Algorithm
6.6 Stalks and Standard Bimodules
6.7 A Functor to Sheaves on Moment Graphs
6.8 Soergel's Conjecture and the Braden–MacPherson Algorithm
Part II Diagrammatic Hecke Category
7 How to Draw Monoidal Categories
7.1 Linear Diagrams for Categories
7.2 Planar Diagrams for 2-Categories
7.3 Drawing Monoidal Categories
7.4 The Temperley–Lieb Category
7.5 More About Isotopy
8 Frobenius Extensions and the One-Color Calculus
8.1 Frobenius Structures
8.1.1 Frobenius Algebra Objects
8.1.2 Diagrammatics for Frobenius Algebra Objects
8.1.3 Playing with Isotopy
8.1.4 Frobenius Extensions
8.2 A Tale of One Color
8.2.1 Frobenius Structure
8.2.2 Additional Generators and Relations
8.2.3 The Moral of the Tale
8.2.4 A Direct Sum Decomposition, Diagrammatically
9 The Dihedral Cathedral
9.1 A Tale of Two Colors
9.2 The Temperley–Lieb 2-Category
9.3 Jones–Wenzl Projectors
9.4 Two-color Relations
10 Generators and Relations for Bott–Samelson Bimodules and the Double Leaves Basis
10.1 Why Present BSBim?
10.2 Generators and Relations
10.2.1 A Diagrammatic Reminder
10.2.2 An Isotopy Presentation of HBS
10.2.3 Examples and Exercises
10.2.4 A Presentation of HBS
10.2.5 The Functor to Bimodules
10.2.6 General Realizations
10.3 Rex Moves and the 3-color Relations
10.4 Light Leaves and Double Leaves
10.4.1 Overview
10.4.2 The Algorithm
10.4.3 Diagrammatics and Bimodules
10.4.4 Light Leaves and Localization
11 The Soergel Categorification Theorem
11.1 Introduction
11.2 Prelude: From HBS to H
11.2.1 Graded Categories
11.2.2 Additive Closure
11.2.3 Karoubian Closure
11.2.4 Karoubi Envelopes Are Krull–Schmidt
11.2.5 Diagrammatics and Karoubi Envelopes
11.3 Grothendieck Groups of Object-Adapted Cellular Categories
11.3.1 Object-Adapted Cellular Categories
11.3.2 First Properties
11.3.3 The Main Example
11.3.4 Classifying Indecomposables in Object-Adapted Cellular Categories
Appendix 1: Krull–Schmidt Categories
Categories with Unique Decompositions
Krull–Schmidt Categories
The Karoubian Property
Semiperfect Rings
The Split Grothendieck Group of a Category with Shift Functor
Appendix 2: Composition Forms, Cellular Forms, and Local Intersection Forms
12 How to Draw Soergel Bimodules
12.1 The 01-Basis
12.2 Commutative Ring Structure on a Bott–Samelson Bimodule
12.3 Trace and the Global Intersection Form
12.4 Bott–Samelson Bimodules and the Light Leaves Basis
12.5 Light Leaves Basis and the Standard Filtration on Bott–Samelson Bimodules
Appendix 1: A Crucial Positivity Result
Part III Historical Context: Category Oand the Kazhdan–Lusztig Conjectures
13 Category O and the Kazhdan–Lusztig Conjectures
13.1 Introduction
13.2 The Verma Problem
13.2.1 Verma Modules
13.2.2 Category O and Its Mysteries
13.3 The Kazhdan–Lusztig Conjectures
13.3.1 The Multiplicity Conjecture
13.3.2 Positivity and Schubert Varieties
13.4 Two Proofs of the Kazhdan–Lusztig Conjecture
14 Lightning Introduction to Category O
14.1 Lie Algebra Basics
14.2 Category O
14.3 Duality in O
14.3.1 Standard Filtrations and BGG Reciprocity
14.4 Blocks of Category O
14.5 Example: g = sl3(C)
15 Soergel's V Functor and the Kazhdan–Lusztig Conjecture
15.1 Brief Reminder on Category O
15.2 Translation Functors
15.2.1 Tensor Products
15.2.2 Definition of Translation Functors and First Properties
15.2.3 Effect on Verma Modules
15.2.4 Wall-Crossing Functors
15.2.5 Effect on Projective Modules
15.3 Soergel Modules
15.4 Soergel's V Functor
15.5 Soergel's Approach to the Kazhdan–Lusztig Conjecture
16 Lightning Introduction to Perverse Sheaves
16.1 Motivation
16.2 Stratified Spaces and Examples
16.2.1 Stratified Resolutions and Schubert Varieties
16.2.2 Constructible Sheaves and Pushforwards
16.2.3 Perverse Sheaves
16.2.4 The Decomposition Theorem
16.2.5 Connection to the Hecke Algebra
Part IV The Hodge Theory of Soergel Bimodules
17 Hodge Theory and Lefschetz Linear Algebra
17.1 Introduction
17.2 Hard Lefschetz
17.3 Hodge–Riemann Bilinear Relations
17.4 Lefschetz Lemmas
18 The Hodge Theory of Soergel Bimodules
18.1 Introduction
18.2 Overview and Preliminaries
18.2.1 The Conjectures of Soergel and Kazhdan–Lusztig
18.2.2 Duality and Invariant Forms
18.2.2.1 Morphisms Between Soergel Bimodules
18.2.2.2 Invariant Forms
18.2.2.3 Invariant Forms on Soergel Bimodules
18.2.2.4 Lefschetz Forms and Positivity
18.2.2.5 Key Statements in the Induction
18.2.2.6 Induced Forms
18.2.3 The Main Theorem
18.3 Outline of the Proof
18.3.1 Step 1
18.3.1.1 Deforming the Lefschetz Operator
18.3.1.2 Flowchart for Step 1
18.3.2 Step 2
18.3.2.1 The Local Intersection Form
18.3.2.2 HR(x,s) Versus HR(x s)
18.3.2.3 Flowchart for Step 2
18.4 The Weak Lefschetz Problem
18.5 From zeta = 0 to zeta >> 0
18.6 From Local to Global Intersection Forms
18.7 Hodge Theory of Matroids
19 Rouquier Complexes and Homological Algebra
19.1 Motivation
19.2 Some Homological Algebra
19.2.1 Complexes and Homotopies
19.2.2 Gaussian Elimination and Minimal Complexes
19.2.3 Grothendieck Groups
19.3 Rouquier Complexes and Categorification of the Braid Group
19.4 Cohomology of Rouquier Complexes
19.5 Perversity
19.6 The Diagonal Miracle
Appendix: More Homological Algebra
Triangulated Structure
Triangulated Grothendieck Groups
Perverse t-Structure
20 Proof of the Hard Lefschetz Theorem
20.1 Introduction
20.2 Preliminaries
20.3 The Hodge–Riemann Relations for the Rouquier Complex
20.4 Positivity of Breaking
20.5 Sketch of the Proof of Hard Lefschetz
Appendix: Some Historical Context and Geometric Intuition for the Proof of Soergel's Conjecture
The Kazhdan–Lusztig Conjecture for Weyl Groups and the Decomposition Theorem
What We Need I: Hard Lefschetz in a Family
What We Need II: A Substitute for Hyperplane Sections
Part V Special Topics
21 Connections to Link Invariants
21.1 Temperley–Lieb Algebra
21.2 Schur–Weyl Duality
21.3 Trace and Link Invariants
21.4 Quantum Groups and Link Invariants
21.5 Ocneanu Trace and HOMFLYPT Polynomial
21.6 Categorification of Braids and of the HOMFLYPT Invariant
21.6.1 Rouquier Complexes
21.6.2 Hochschild Homology
21.6.3 Categorifying the Standard Trace
22 Cells and Representations of the Hecke Algebra in Type A
22.1 Cells
22.1.1 Cells for a Monoidal Category
22.1.2 Cell Module Categories
22.1.3 Cells for a Based Algebra
22.2 Cells in Type A
22.2.1 Young Diagrams and Tableaux
22.2.2 The Robinson–Schensted Correspondence
22.2.3 Cells in Type A
22.2.4 The k-row Quotient of the Hecke Algebra
22.3 Representations of the Hecke Algebra in Type A
23 Categorical Diagonalization
23.1 Classical Linear Algebra
23.2 Categorified Linear Algebra
23.2.1 Eigenobjects
23.2.2 Prediagonalizability
23.2.3 Twisted Complexes
23.2.4 Diagonalizability
23.2.5 Smallness
23.2.6 Lagrange Interpolation
23.3 A Toy Example
23.4 Diagonalizing the Full Twist
23.4.1 Type A1
23.4.2 Type A
23.4.3 The General Case
24 Singular Soergel Bimodules and Their Diagrammatics
24.1 The Classical Theory of Singular Soergel Bimodules
24.1.1 Bimodules and Functors
24.1.2 Singular Soergel Bimodules
24.1.3 Categorification Theorems
24.2 One-Color Singular Diagrammatics
24.2.1 Diagrammatics for a Frobenius Extension
24.2.2 Relationship to the One-Color Soergel Calculus
24.2.3 Relationship with the Temperley–Lieb 2-Category
24.3 Singular Soergel Diagrammatics in General
24.3.1 The Upgraded Chevalley Theorem, Part I
24.3.2 The Upgraded Chevalley Theorem, Part II
24.3.3 Diagrammatics for a Cube of Frobenius Extensions
24.3.4 The Jones–Wenzl Relation
24.3.5 Additional Relations, Applications, and Future Work
24.3.6 Other Realizations
25 Koszul Duality I
25.1 Introduction
25.1.1 Morita Theory
25.2 dg-Algebras
25.3 dg-Morita Theory
25.4 Koszul Duality for Polynomial Rings
25.5 Review of the Kazhdan–Lusztig Conjecture
25.6 Evidence of Koszul Duality in Category O
26 Koszul Duality II
26.1 Introduction
26.2 Graded Category O0
26.2.1 Desiderata
26.2.2 Motivation from Soergel's V Functor
26.2.3 Definition of Soergel Category O0
26.2.4 Example: Soergel O0 in Type A1
26.3 Homological Properties of Soergel O0
26.3.1 Highest Weight Structure
26.3.2 Tilting Objects and the Realization Functor
26.3.3 Ringel Duality
26.4 Koszul Duality
26.4.1 Statement
26.4.2 Monodromy Action
26.4.3 Wall-Crossing Functors
26.4.4 Outline of the Proof of Theorem 26.26
26.5 Some Odds and Ends
27 The p-Canonical Basis
27.1 Introduction
27.2 Definition of the p-Canonical Basis
27.3 Computing the p-Canonical Basis
27.4 Geometric Incarnation of the Hecke Category
27.4.1 Parity Complexes on Flag Varieties
27.4.2 Parity Complexes and the Hecke Category
27.5 Modular Representation Theory of Reductive Groups
27.5.1 Soergel's Modular Category O
27.5.2 The Riche–Williamson Conjecture
27.5.3 This Is Not the End
References
Index