توضیحاتی در مورد کتاب Kale.N and Jones, N., Practical Analytics, 2nd Ed., Epistemy Press, 2020
نام کتاب : Kale.N and Jones, N., Practical Analytics, 2nd Ed., Epistemy Press, 2020
ویرایش : 2
عنوان ترجمه شده به فارسی : Kale.N and Jones, N., Practical Analytics, ویرایش دوم, Epistemy Press, 2020
سری :
نویسندگان : Kale.N and Jones, N
ناشر :
سال نشر : 2020
تعداد صفحات : 478
ISBN (شابک) : 9780997209228
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 25 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Title Page
Copyright
About the Cover
Preface
Acknowledgments
About the Authors
Table of Contents
Section 1: Practical Analytics
Chapter 1 – Data Analytics Overview
Learning Objectives
What is Data Analytics?
Why Study Data Analytics?
Business and Data Analytics
Applications of Analytics
Analytics Methodology
Global Bike Company6—The Model Company
Summary
Section 2: Data Fundamentals
Chapter 2 – Data Acquisition
Learning Objectives
Structured and Unstructured Data
Data Sources
Data Gathering
Summary
Chapter 3 – Dimensional Data Modeling
Learning Objectives
Data Modeling: Database Structure
The Data Warehousing Process
Data Warehouse Modeling
Other Data Structures
Summary
Chapter 4 – Data Extraction, Transformation, and Loading
Learning Objectives
What is ETL?
Summary
Section 3: Reporting and Analysis
Chapter 5 – Slicing and Dicing
Learning Objectives
A Slicing and Dicing Example
Tools Used for Slicing and Dicing: The Pivot Table
Slicing and Dicing Basics: Data Manipulation
OLAP Tools to Analyze Multidimensional Data
Summary
Chapter 6 – Data Visualization
Learning Objectives
A Charting Overview
Types of Variables
Types of Charts
More Charts
Which Chart Is Most Appropriate for My Visualization?
Charting Considerations
Other Visualization Techniques
Summary
Chapter 7 – Reports and Dashboards
Learning Objectives
Reports
Authoring Reports
Dashboards
Types of Dashboards
The Dashboarding Process
Summary
Section 4: Knowledge Discovery, Prediction, and Decision-Making
Chapter 8 – Data Mining
Learning Objectives
What is Data Mining?
Data Mining Overview
Systems
Data Mining Process
Summary
Chapter 9 – Unsupervised Machine Learning
Learning Objectives
Clustering
Association Analysis
Summary
Chapter 10 – Time Series Analysis and Forecasting
Learning Objectives
Time Series Analysis
Forecasting Using Exponential Smoothing
Summary
Chapter 11 – Predictive Machine Learning
Learning Objectives
Predictive Data Models
Summary
Chapter 12 – Analytics in Practice
Learning Objectives
The Decision Cycle
Feedback Loop and Optimization
Responsibilities of the Analyst
Automating Decision-Making
Examples of the Decision Cycle
Summary
Appendix A
Appendix B
Appendix C
This eBook is licensed to Zaher Haidar, haidarzaher1111@gmail.com