توضیحاتی در مورد کتاب Laboratory Methods in Dynamic Electroanalysis
نام کتاب : Laboratory Methods in Dynamic Electroanalysis
عنوان ترجمه شده به فارسی : روش های آزمایشگاهی در الکتروآنالیز دینامیکی
سری :
نویسندگان : M. Teresa Fernández Abedul (editor)
ناشر : Elsevier
سال نشر : 2019
تعداد صفحات : 368
ISBN (شابک) : 0128159324 , 9780128159323
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 18 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
روشهای آزمایشگاهی در الکتروآنالیز دینامیکی راهنمای مفیدی برای معرفی شیمیدانان تحلیلی به دنیای الکتروآنالیز با استفاده از روشهای ساده و کم هزینه است. از آنجایی که دستگاه های الکتروتحلیلی از سلول های الکتروشیمیایی معمولی (10-20 میلی لیتر) به سلول های فعلی (1-5 متر لیتر) با مواد مختلف مانند کاغذ منتقل شده اند، استراتژی های جالبی مانند نانوساختار الکترودها، سلول های میکروسیال و حس زیستی پدیدار شده اند. این کتاب روشهای دقیق و بهروز برای الکتروآنالیز ارائه میکند و روندهای اصلی در سلولها و الکترودهای الکتروشیمیایی، از جمله الکترودهای میکروسیال، دستگاههای الکتروشیمیایی مبتنی بر کاغذ، الکتروفورز ریزتراشه با تشخیص الکتروشیمیایی یکپارچه، نانوساختار الکترودها و نانوذرات را به عنوان برچسب در سنجشهای زیستی پوشش میدهد. و بیوسنینگ الکتروشیمیایی. تکنیکها و استراتژیها به روشی ساده، آموزشی و مبتنی بر تمرین ارائه میشوند و کتابشناسی منابع اطلاعاتی بیشتری را در اختیار خوانندگان قرار میدهد.
فهرست مطالب :
Cover
Laboratory Methods in Dynamic Electroanalysis
Copyright
Dedication
Contributors
Preface
Acknowledgments
1 -
Dynamic electroanalysis: an overview
1.1 Dynamic electroanalysis
1.2 Additional notes
References
Part I: Dynamic electroanalytical techniques
2 -
Determination of ascorbic acid in dietary supplements by cyclic voltammetry
2.1 Background
2.2 Electrochemical cell
2.3 Chemicals and supplies
2.4 Hazards
2.5 Experimental procedure
2.5.1 Preparation of solutions
2.5.2 Characterization of the redox processes
2.5.2.1 Redox process of ascorbic acid
2.5.2.2 Scan rate study
2.5.2.3 pH study
2.5.2.4 Redox process of gallic acid
2.5.3 Calibration curve of ascorbic acid
2.5.4 Determination of ascorbic acid in a dietary supplement
2.6 Lab report
2.7 Additional notes
2.8 Assessment and discussion questions
References
3 -
Electrochemical behavior of the redox probe hexaammineruthenium(III) ([Ru(NH3)6]3+) using voltammetric techniques
3.1 Background
3.2 Electrochemical cell
3.3 Chemicals and supplies
3.4 Hazards
3.5 Experimental procedure
3.5.1 Preparation of solutions
3.5.2 Analytical signal and calibration curve obtained by cyclic voltammetry
3.5.3 Calibration curve obtained by differential pulse voltammetry
3.5.4 Calibration curve obtained by square wave voltammetry
3.6 Lab report
3.7 Additional notes
3.8 Assessment and discussion questions
References
4 -
Anodic stripping voltammetric determination of lead and cadmium with stencil-printed transparency electrodes
4.1 Background
4.2 Electrochemical cell design
4.3 Chemicals and supplies
4.4 Hazards
4.5 Experimental procedure
4.5.1 Solutions and sample preparation
4.5.2 Fabrication of the electrochemical cell
4.5.3 Electrochemical characterization of the electrodes using hexaammineruthenium(III)
4.5.4 Quantitation of the amount of lead and cadmium deposited on the electrode surface
4.5.5 Bismuth effect on lead and cadmium stripping currents
4.5.6 Analytical features of the sensor
4.5.7 Selectivity assessment
4.5.8 Determination of lead and cadmium in water samples
4.6 Lab report
4.7 Additional notes
4.8 Assessment and discussion questions
References
5 -
Adsorptive stripping voltammetry of indigo blue in a flow system
5.1 Background
5.2 Chemicals and supplies
5.3 Hazards
5.4 Flow injection analysis electrochemical system
5.5 Experimental procedures
5.5.1 Enzyme-linked immunosorbent assay procedure
5.5.2 Flow procedure and voltammetric detection
5.5.3 Electrochemical behavior of indigo
5.5.4 Calibration curve of IL-10
5.6 Lab report
5.7 Additional notes
5.8 Assessment and discussion questions
References
6 -
Enhancing electrochemical performance by using redox cycling with interdigitated electrodes
6.1 Background
6.2 Chemicals and supplies
6.3 Hazards
6.4 Electrochemical system setup
6.5 Experimental procedure
6.5.1 Electrode precleaning
6.5.2 Electrochemical measurements
6.5.3 Electrochemical behavior of redox systems by cyclic voltammetry
6.5.4 Interdigitated array microelectrodes performance by cyclic voltammetry
6.6 Lab report
6.7 Additional notes
6.8 Assessment and discussion questions
References
7 -
Amperometric detection of NADH using carbon-based electrodes
7.1 Background
7.2 Chemicals and supplies
7.3 Hazards
7.4 Experimental procedure
7.4.1 Preparation of solutions
7.4.2 Direct unmediated oxidation of NADH on graphite electrodes
7.4.3 Mediated oxidation of NADH
7.4.4 Amperometric measurement of NADH
7.5 Lab report
7.6 Additional notes
7.7 Assessment and discussion questions
References
8 -
Chronoamperometric determination of ascorbic acid on paper-based devices
8.1 Background
8.2 Electrochemical cell design
8.3 Chemicals and supplies
8.4 Hazards
8.5 Experimental procedure
8.5.1 Fabrication of the electrochemical cell
8.5.2 Choice of the potential step by cyclic voltammetry
8.5.3 Calibration curve with chronoamperometric readout
8.5.4 Determination of ascorbic acid in fruit juices
8.6 Lab report
8.7 Additional notes
8.8 Assessment and discussion questions
References
9 -
Electrochemical detection of melatonin in a flow injection analysis system
9.1 Background
9.2 Electrochemical thin-layer cell
9.3 Flow injection analysis system
9.4 Chemicals and supplies
9.5 Hazards
9.6 Experimental procedure
9.6.1 Preparation of solutions
9.6.2 Cyclic voltammetric measurements
9.6.2.1 Redox processes of melatonin
9.6.2.2 Scan rate study
9.6.3 Flow injection analysis with amperometric detection
9.6.3.1 Hydrodynamic curve
9.6.3.2 Effect of the flow rate
9.6.3.3 Precision studies
9.6.3.4 Calibration curve
9.6.3.5 Sample preparation and measurement
9.7 Lab report
9.8 Additional notes
9.9 Assessment and discussion questions
References
10 -
Batch injection analysis for amperometric determination of ascorbic acid at ruthenium dioxide screen-printed electrodes
10.1 Background
10.2 Chemicals and supplies
10.3 Hazards
10.4 Experimental procedure
10.4.1 Preparation of the BIA cell
10.4.2 Preparation of the electronic micropipette
10.4.3 Optimization of parameters that affect the analytical signal
10.4.3.1 Optimization of the potential of detection (hydrodynamic curve)
10.4.3.2 Optimization of speed and volume of injection
10.4.3.3 Effect of stirrer speed
10.4.4 Calibration plot of ascorbic acid
10.4.5 Interference evaluation
10.4.6 Determination of ascorbic acid in orange juices
10.5 Lab report
10.6 Additional notes
10.7 Assessment and discussion questions
References
11 -
Impedimetric aptasensor for determination of the antibiotic neomycin B
11.1 Background
11.2 Chemicals and supplies
11.3 Hazards
11.4 Experimental procedure
11.4.1 Electrode cleaning and pretreatment
11.4.2 Sensing phase preparation
11.4.2.1 Formation of mercaptopropionic acid self-assembled monolayer on the gold surface
11.4.2.2 Covalent binding of neomycin B to the mercaptopropionic acid self-assembled monolayer
11.4.2.3 Immobilization of the antineomycin receptor on the antibiotic-modified electrode surface
11.4.3 Sensing phase evaluation
11.4.4 Displacement assay
11.4.5 Data collection and analysis
11.4.6 Regeneration of the sensing phase
11.4.7 Selectivity evaluation
11.5 Lab report
11.6 Additional notes
11.7 Assessment and discussion questions
References
12 -
Electrochemical impedance spectroscopy for characterization of electrode surfaces: carbon nanotubes on gold electrodes
12.1 Background
12.2 Electrochemical cell
12.3 Chemicals and supplies
12.4 Hazards
12.5 Electrochemical procedure
12.5.1 Modification of electrodes
12.5.2 Cyclic voltammetry and electrochemical impedance spectroscopy measurements
12.6 Lab report
12.7 Additional notes
12.8 Assessment and discussion questions
References
Part II: Electroanalysis and microfluidics
13 -
Single- and dual-channel hybrid PDMS/glass microchip electrophoresis device with amperometric detection
13.1 Background
13.2 Chemicals and supplies
13.3 Microchip fabrication
13.4 Microchip designs
13.5 Electrochemical detector design
13.6 Hazards
13.7 Experimental procedure
13.7.1 Electrophoretic separation in a single-channel microchip
13.7.2 Electrochemical detection in a dual-channel microchip
13.8 Lab report
13.9 Additional notes
13.10 Assessment and discussion questions
References
14 -
Analysis of uric acid and related compounds in urine samples by electrophoresis in microfluidic chips
14.1 Background
14.2 Electrophoresis system setup
14.3 Chemicals and supplies
14.4 Hazards
14.5 Experimental procedure
14.5.1 Preparation of solutions
14.5.2 Sample preparation
14.5.3 Electrophoretic procedure
14.5.3.1 Microchip pretreatment
14.5.3.2 Baseline stabilization
14.5.3.3 Unpinched injection
14.5.3.4 Separation and detection
14.5.4 General electrophoretic behavior
14.5.4.1 Buffer solution
14.5.4.2 Electrochemical detection
14.5.4.3 Separation and injection performance
14.5.5 Analytical parameters
14.5.6 Real sample analysis
14.6 Lab report
14.7 Additional notes
14.8 Assessment and discussion questions
References
15 -
Microchannel modifications in microchip reverse electrophoresis for ferrocene carboxylic acid determination
15.1 Background
15.2 Electrophoresis microchip
15.3 Chemicals and supplies
15.4 Hazards
15.5 Experimental procedure
15.5.1 Solutions and sample preparation
15.5.2 Dynamic coating of microchannels
15.5.3 Electrophoresis and electrochemical detection
15.5.4 Evaluation of the detection potential
15.5.5 Calibration curve
15.6 Lab report
15.7 Additional notes
15.8 Assessment and discussion questions
References
16 -
Integrated microfluidic electrochemical sensors to enhance automated flow analysis systems
16.1 Background
16.2 Flow injection analysis system setup
16.3 Chemicals and supplies
16.4 Hazards
16.5 Experimental procedure
16.5.1 Electrochemical procedures
16.5.1.1 Electrode precleaning
16.5.1.2 Amperometric measurements
16.5.2 Influence of the electrode material, carrier solution, and detection potential
16.5.3 Analytical parameters
16.5.4 Comparison of flow injection analysis systems: wall-jet versus microfluidic thin-layer flow cells
16.5.5 Paracetamol determination
16.5.5.1 Sample preparation
16.5.5.2 Sample measurement
16.6 Lab report
16.7 Additional notes
16.8 Assessment and discussion questions
References
17 -
Bienzymatic amperometric glucose biosensor
17.1 Background
17.2 Electrochemical setup
17.3 Chemicals and supplies
17.4 Hazards
17.5 Experimental procedure
17.5.1 Electrochemical study of ferrocene behavior
17.5.2 Construction of the amperometric glucose sensor. Evaluation of its analytical performance
17.5.3 Determination of glucose in real food samples
17.6 Lab report
17.7 Additional notes
17.8 Assessment and discussion questions
References
Part
III: Bioelectroanalysis
18 -
Determination of ethyl alcohol in beverages using an electrochemical enzymatic sensor
18.1 Background
18.2 Electrochemical setup
18.3 Chemicals and supplies
18.4 Hazards
18.5 Experimental procedure
18.5.1 Electrocatalytic detection of NADH on carbon paste electrodes modified with 2,8-dioxoadenosine
18.5.2 Construction of an amperometric ethanol sensor. Evaluation of its analytical performance
18.5.3 Determination of ethanol content in beer
18.6 Lab report
18.7 Additional notes
18.8 Assessment and discussion questions
References
19 -
Enzymatic determination of ethanol on screen-printed cobalt phthalocyanine/carbon electrodes
19.1 Background
19.2 Electrochemical cell
19.3 Chemical and supplies
19.4 Hazards
19.5 Experimental procedure
19.5.1 Solutions and sample preparation
19.5.2 Construction of the sensor
19.5.3 Electrochemical measurements
19.5.4 Optimization of the biosensor
19.5.5 Calibration and determination of ethanol in alcoholic beverages
19.6 Lab report
19.7 Additional notes
19.8 Assessment and discussion questions
References
20 -
Immunoelectroanalytical assay based on the electrocatalytic effect of gold labels on silver electrodeposition
20.1 Background
20.2 Electrochemical cells
20.3 Chemicals and supplies
20.2.1 Chemicals:
20.4 Hazards
20.5 Experimental procedures
20.5.1 Labeling of anti-HSA with sodium aurothiomalate
20.5.2 Electrode pretreatment
20.5.3 Recording of the analytical signal
20.5.4 Immunoassays
20.5.4.1 Noncompetitive immunoassay
20.5.4.2 Competitive immunoassay
20.6 Lab report
20.7 Additional notes
20.8 Assessment and discussion questions
References
21 -
Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence
21.1 Background
21.2 Electrochemical cell
21.3 Chemicals and supplies
21.4 Hazards
21.5 Experimental procedures
21.5.1 Construction of the electrochemical cell
21.5.2 Gold sputtering
21.5.3 Hybridization assay
21.5.4 Electrochemical measurement
21.5.5 Effect of evaporation
21.5.6 Surface blocking
21.5.7 Analytical characteristics
21.6 Lab report
21.7 Additional notes
21.8 Assessment and discussion questions
References
22 -
Aptamer-based magnetoassay for gluten determination
22.1 Background
22.2 Chemical and supplies
22.3 Hazards
22.4 Experimental procedure
22.4.1 Modification of streptavidin-coated magnetic microbeads with 33-mer peptide
22.4.2 Competitive binding assay
22.4.3 Enzymatic reaction and electrochemical detection
22.4.4 Data collection and analysis
22.5 Lab report
22.6 Additional notes
22.7 Assessment and discussion questions
References
Part IV: Nanomaterials and electroanalysis
23.-
Determination of lead with electrodes nanostructured with gold nanoparticles
23.1 Background
23.2 Electrochemical cell
23.3 Chemicals and supplies
23.4 Hazards
23.5 Experimental procedure
23.5.1 Solutions and sample preparation
23.5.2 Nanostructuration of the electrochemical cell
23.5.3 Electrochemical measurements
23.5.4 Identification of the underpotential deposition process
23.5.5 Calibration curve
23.5.6 Determination of lead in water samples
23.6 Lab report
23.7 Additional notes
23.8 Assessment and discussion questions
References
24 -
Electrochemical behavior of the dye methylene blue on screen-printed gold electrodes modified with carbon nanotubes
24.1 Background
24.2 Screen-printed gold electrodes
24.3 Chemicals and supplies
24.4 Hazards
24.5 Experimental procedure
24.5.1 Solutions and sample preparation
24.5.2 Nanostructuration of screen-printed gold electrodes
24.5.2.1 Dispersion of carbon nanotubes
24.5.2.2 Nanostructuration of screen-printed gold electrodes
24.5.3 Electrochemical behavior of methylene blue on AuSPEs and MWCNTs-AuSPEs
24.5.4 Accumulation of methylene blue on MWCNTs-AuSPEs
24.5.5 Optimization of the nanostructuration
24.5.5.1 Ratio of carbon nanotube dispersion/water
24.5.5.2 Volume of drop of carbon naotube dispersion
24.5.5.3 Time and temperature of the nanostructuration step
24.5.6 Calibration curve
24.6 Lab report
24.7 Additional notes
24.8 Assessment and discussion questions
References
Part V: Low-cost electroanalysis
25 -
Determination of glucose with an enzymatic paper-based sensor
25.1 Background
25.2 Electrochemical cell design
25.3 Chemical and supplies
25.4 Hazards
25.5 Experimental procedure
25.5.1 Solutions and sample preparation
25.5.2 Fabrication of the electrochemical cell
25.5.3 Electrochemical measurements
25.5.4 Study of the electrochemical behavior of ferrocyanide
25.5.5 Construction of the biosensor and signal readout procedure
25.5.6 Optimization of the biosensor
25.5.7 Calibration and determination of glucose in beverages
25.6 Lab report
25.7 Additional notes
25.8 Assessment and discussion questions
References
26 -
Determination of arsenic (III) in wines with nanostructured paper-based electrodes
26.1 Background
26.2 Chemicals and supplies
26.3 Hazards
26.4 Experimental procedure
26.4.1 Fabrication of the electrochemical cell
26.4.2 Gold nanostructuration of the carbon paper-based electrode
26.4.3 Electrochemical characterization of As(III) by cyclic voltammetry using nanostructured paper-based devices
26.4.4 Calibration curve by chronoamperometric stripping and analytical features of the sensor
26.4.5 As(III) determination in white wines
26.5 Lab report
26.6 Additional notes
26.7 Assessment and discussion questions
References
27 -
Pin-based electrochemical sensor
27.1 Background
27.2 Electrochemical cell design
27.3 Chemicals and supplies
27.4 Hazards
27.5 Experimental procedure
27.5.1 Solutions and sample preparation
27.5.2 Fabrication of the electrochemical cell
27.5.3 Evaluation of the effect of the drying time
27.5.4 Assessment of the detection potential for glucose analysis
27.5.5 Construction of the biosensor and calibration curve of glucose
27.5.6 Study of the precision
27.5.7 Interference evaluation
27.5.8 Determination of glucose in real food samples
27.6 Lab report
27.7 Additional notes
27.8 Assessment and discussion questions
References
28 -
Flow injection electroanalysis with pins
28.1 Background
28.2 Flow injection analysis and electrochemical cell design
28.3 Chemical and supplies
28.4 Hazards
28.5 Experimental procedure
28.5.1 Fabrication of the electrochemical cell
28.5.2 Solutions and sample preparation
28.5.3 Hydrodynamic curve
28.5.4 Evaluation of the pin-based flow injection analysis system
28.5.5 Calibration curve and glucose determination in real beverage samples
28.6 Lab report
28.7 Additional notes
28.8 Assessment and discussion questions
References
29 -
Staple-based paper electrochemical platform for quantitative analysis
29.1 Background
29.2 Electrochemical setup
29.3 Chemicals and supplies
29.4 Hazards
29.5 Experimental procedure
29.5.1 Fabrication of the electrochemical platform
29.5.1.1 Staples pretreatment
29.5.1.2 Modification of staples with carbon ink
29.5.1.3 Design of the electrochemical cell (PDMS holder)
29.5.1.4 Wax-printed paper platform
29.5.2 Study of the analytical characteristics
29.5.2.1 Evaluation of the staple modification with carbon ink
29.5.2.2 Reproducibility
29.5.2.3 Calibration curve
29.6 Lab report
29.7 Additional notes
29.8 Assessment and discussion questions
References
Part VI: Multiplexed electroanalysis
30 -
Simultaneous measurements with a multiplexed platform containing eight electrochemical cells
30.1 Background
30.2 Electrochemical platform
30.3 Chemical and supplies
30.4 Hazards
30.5 Experimental procedure
30.5.1 Preparation of solutions
30.5.2 Electrochemical measurements
30.5.3 Study of the electrochemical behavior of ferrocyanide and dopamine
30.5.4 Study of the inter- and intra-array reproducibility
30.5.5 Simultaneous calibration of ferrocyanide and dopamine
30.5.6 Simultaneous bioassays
30.6 Lab report
30.7 Additional notes
30.8 Assessment and discussion questions
References
31 -
Simultaneous detection of bacteria causing community-acquired pneumonia by genosensing
31.1 Background
31.2 Electrochemical cell design
31.3 Chemicals and supplies
31.4 Hazards
31.5 Experimental procedure
31.5.1 Preparation of solutions
31.5.2 Surface modification of dual screen-printed carbon electrodes
31.5.3 Hybridization reaction procedure
31.6 Lab report
31.7 Additional notes
31.8 Assessment and discussion questions
References
Part VII: Spectroelectrochemical techniques
32 -
Electrochemiluminescence of tris (1,10-phenanthroline) ruthenium(II) complex with multipulsed amperometric detection
32.1 Background
32.2 Chemicals and supplies
32.3 Hazards
32.4 Experimental procedure
32.4.1 General setup of the equipment
32.4.2 EC and ECL characterization of [Ru(Phen)3]2+ by CV
32.4.3 Effect of the buffer composition on the ECL signal obtained by CV
32.4.4 Optimization of the multipulsed amperometric detection
32.4.4.1 Optimization of the excitation pulse potential (E2)
32.4.4.2 Optimization of the excitation pulse width (t2)
32.4.4.3 Optimization of the relaxation pulse potential (E1 and E3)
32.4.4.4 Optimization of the relaxation pulse width (t1 and t3)
32.4.5 Monitoring ECL emission (with multipulsed amperometric detection) with time
32.5 Lab report
32.6 Additional notes
32.7 Assessment and discussion questions
References
33 -
Detection of hydrogen peroxide by flow injection analysis based on electrochemiluminescence resonance energy transfer donor ...
33.1 Background
33.2 Chemicals and supplies
33.3 Hazards
33.4 Experimental procedure
33.4.1 Preparation of the flow system to obtain ECL signals
33.4.2 Injections of different mixtures of luminol, hydrogen peroxide, and fluorescein
33.4.3 Optimization of concentrations of luminol and fluorescein
33.4.3.1 Optimization of fluorescein concentration
33.4.3.2 Optimization of luminol concentration
33.4.4 Calibration plot for hydrogen peroxide
33.5 Lab report
33.6 Additional notes
33.7 Assessment and discussion questions
References
34 -
Determination of tris(bipyridine)ruthenium(II) based on electrochemical surface-enhanced raman scattering
34.1 Background
34.2 Spectroelectrochemical setup
34.3 Chemicals and supplies
34.4 Hazards
34.5 Experimental procedure
34.5.1 Raman spectra of [Ru(bpy)3]2+ on graphite and silver electrodes without electrochemical activation
34.5.2 Raman spectra of [Ru(bpy)3]2+ on silver electrodes with electrochemical activation
34.5.3 Calibration plot for [Ru(bpy)3]2+ through EC-SERS effect
34.6 Lab report
34.7 Additional notes
34.8 Assessment and discussion questions
References
Part VIII: General considerations
35 -
Design of experiments at electroanalysis. Application to the optimization of nanostructured electrodes for sensor development
35.1 Background
35.2 Electrochemical cell
35.3 Chemicals and supplies
Reagents and solutions
Materials and instruments
35.4 Hazards
35.5 Experimental procedure
35.5.1 Preparation of the nanostructured electrodes
35.5.2 Design of experiments for in situ generation of gold nanoparticles
35.5.3 Optimization of the nanostructured electrodes
35.5.4 Determination of mercury in tap water
35.6 Lab report
35.7 Additional notes
Glossary of terms
35.8 Assessment and discussion questions
References
36 -
Bibliographic resources in electroanalysis
36.1 Books and monographs
36.2 Journals
36.3 Web resources
Index
A
B
C
D
E
F
G
H
I
L
M
N
O
P
R
S
T
U
V
W
Back Cover
توضیحاتی در مورد کتاب به زبان اصلی :
Laboratory Methods in Dynamic Electroanalysis is a useful guide to introduce analytical chemists to the world of electroanalysis using simple, low-cost methods. As electroanalytical devices have moved from conventional electrochemical cells (10-20 mL) to current cells (1-5 m L) with different materials such as paper, interesting strategies have emerged, such as nanostructuration of electrodes, microfluidic cells, and biosensing. This book provides detailed, up-to-date procedures for electroanalysis and covers the main trends in electrochemical cells and electrodes, including microfluidic electrodes, paper-based electrochemical devices, microchip electrophoresis with integrated electrochemical detection, nanostructuration of electrodes and nanoparticles as labels in bioassays, and electrochemical biosensing. Techniques and strategies are presented in an easy-to-understand, didactic, practice-based way, and a bibliography provides readers with additional sources of information.