Learning Google Analytics: Creating Business Impact and Driving Insights

دانلود کتاب Learning Google Analytics: Creating Business Impact and Driving Insights

43000 تومان موجود

کتاب یادگیری Google Analytics: ایجاد تأثیر تجاری و بینش های رانندگی نسخه زبان اصلی

دانلود کتاب یادگیری Google Analytics: ایجاد تأثیر تجاری و بینش های رانندگی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 5


توضیحاتی در مورد کتاب Learning Google Analytics: Creating Business Impact and Driving Insights

نام کتاب : Learning Google Analytics: Creating Business Impact and Driving Insights
عنوان ترجمه شده به فارسی : یادگیری Google Analytics: ایجاد تأثیر تجاری و بینش های رانندگی
سری :
نویسندگان :
ناشر : O'Reilly Media
سال نشر :
تعداد صفحات : 342
ISBN (شابک) : 9781098113087 , 109811308X
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 22 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover\nCopyright\nTable of Contents\nPreface\n Who This Book Is For\n Conventions Used in This Book\n Using Code Examples\n O’Reilly Online Learning\n How to Contact Us\n Acknowledgments\nChapter 1. The New Google Analytics 4\n Introducing GA4\n The Unification of Mobile and Web Analytics\n Firebase and BigQuery—First Steps into the Cloud\n GA4 Deployment\n Universal Analytics Versus GA4\n The GA4 Data Model\n Events\n Custom Parameters\n Ecommerce Items\n User Properties\n Google Cloud Platform\n Relevant GCP Services\n Coding Skills\n Onboarding to GCP\n Moving Up the Serverless Pyramid\n Wrapping Up Our GCP Intro\n Introduction to Our Use Cases\n Use Case: Predictive Purchases\n Use Case: Audience Segmentation\n Use Case: Real-Time Forecasting\n Summary\nChapter 2. Data Architecture and Strategy\n Creating an Environment for Success\n Stakeholder Buy-In\n A Use Case–Led Approach to Avoiding Spaceships\n Demonstrating Business Value\n Assessing Digital Maturity\n Prioritizing Your Use Cases\n Technical Requirements\n Data Ingestion\n Data Storage\n Data Modeling\n Model Performance Versus Business Value\n Principle of Least Movement (of Data)\n Raw Data Inputs to Informational Outputs\n Helping Your Data Scientists/Modelers\n Setting Model KPIs\n Final Location of Modeling\n Data Activation\n Maybe It’s Not a Dashboard\n Interaction with Your End Users\n User Privacy\n Respecting User Privacy Choices\n Privacy by Design\n Helpful Tools\n gcloud\n Version Control/Git\n Integrated Developer Environments\n Containers (Including Docker)\n Summary\nChapter 3. Data Ingestion\n Breaking Down Data Silos\n Less Is More\n Specifying Data Schema\n GA4 Configuration\n GA4 Event Types\n GTM Capturing GA4 Events\n Custom Field Configuration\n Modifying or Creating GA4 Events\n User Properties\n Measurement Protocol v2\n Exporting GA4 Data via APIs\n Authentication with Data API\n Running Data API Queries\n BigQuery\n Linking GA4 with BigQuery\n BigQuery SQL on Your GA4 Exports\n BigQuery for Other Data Sources\n Public BigQuery Datasets\n GTM Server Side\n Google Cloud Storage\n Event-Driven Storage\n Data Privacy\n CRM Database Imports via GCS\n Setting Up Cloud Build CI/CD with GitHub\n Setting Up GitHub\n Setting Up the GitHub Connection to Cloud Build\n Adding Files to the Repository\n Summary\nChapter 4. Data Storage\n Data Principles\n Tidy Data\n Datasets for Different Roles\n BigQuery\n When to Use BigQuery\n Dataset Organization\n Table Tips\n Pub/Sub\n Setting Up a Pub/Sub Topic for GA4 BigQuery Exports\n Creating Partitioned BigQuery Tables from Your GA4 Export\n Server-side Push to Pub/Sub\n Firestore\n When to Use Firestore\n Accessing Firestore Data Via an API\n GCS\n Scheduling Data Imports\n Data Import Types: Streaming Versus Scheduled Batches\n BigQuery Views\n BigQuery Scheduled Queries\n Cloud Composer\n Cloud Scheduler\n Cloud Build\n Streaming Data Flows\n Pub/Sub for Streaming Data\n Apache Beam/DataFlow\n Streaming Via Cloud Functions\n Protecting User Privacy\n Data Privacy by Design\n Data Expiration in BigQuery\n Data Loss Prevention API\n Summary\nChapter 5. Data Modeling\n GA4 Data Modeling\n Standard Reports and Explorations\n Attribution Modeling\n User and Session Resolution\n Consent Mode Modeling\n Audience Creation\n Predictive Metrics\n Insights\n Turning Data into Insight\n Scoping Data Outcomes\n Accuracy Versus Incremental Benefit\n Choosing Your Method of Approach\n Keeping Your Modeling Pipelines Up-To-Date\n Linking Datasets\n BigQuery ML\n Comparison of BigQuery ML Models\n Putting a Model into Production\n Machine Learning APIs\n Putting an ML API into Production\n Google Cloud AI: Vertex AI\n Putting a Vertex API into Production\n Integration with R\n Overview of Capabilities\n Docker\n R in Production\n Summary\nChapter 6. Data Activation\n Importance of Data Activation\n GA4 Audiences and Google Marketing Platform\n Google Optimize\n Visualization\n Making Dashboards Work\n GA4 Dashboarding Options\n Data Studio\n Looker\n Other Third-Party Visualization Tools\n Aggregate Tables Bring Data-Driven Decisions\n Caching and Cost Management\n Creating Marketing APIs\n Creating Microservices\n Event Triggers\n Firestore Integrations\n Summary\nChapter 7. Use Case: Predictive Purchases\n Creating the Business Case\n Assessing Value\n Estimating Resources\n Data Architecture\n Data Ingestion: GA4 Configuration\n Data Storage and Privacy Design\n Data Modeling—Exporting Audiences to Google Ads\n Data Activation: Testing Performance\n Summary\nChapter 8. Use Case: Audience Segmentation\n Creating the Business Case\n Assessing Value\n Estimating Resources\n Data Architecture\n Data Ingestion\n GA4 Data Capture Configuration\n GA4 BigQuery Exports\n Data Storage: Transformations of Your Datasets\n Data Modeling\n Data Activation\n Setting Up GA4 Imports Via GTM SS\n Exporting Audiences from GA4\n Testing Performance\n Summary\nChapter 9. Use Case: Real-Time Forecasting\n Creating the Business Case\n Resources Needed\n Data Architecture\n Data Ingestion\n GA4 Configuration\n Data Storage\n Hosting the Shiny App on Cloud Run\n Data Modeling\n Data Activation—A Real-Time Dashboard\n R Code for the Real-Time Shiny App\n GA4 Authentication with a Service Account\n Putting It All Together in a Shiny App\n Summary\nChapter 10. Next Steps\n Motivation: How I Learned What Is in This Book\n Learning Resources\n Asking for Help\n Certifications\n Final Thoughts\nIndex\nAbout the Author\nColophon




پست ها تصادفی