توضیحاتی در مورد کتاب Linear and Nonlinear Optical Responses of Chiral Multifold Semimetals (Springer Theses)
نام کتاب : Linear and Nonlinear Optical Responses of Chiral Multifold Semimetals (Springer Theses)
عنوان ترجمه شده به فارسی : پاسخ های نوری خطی و غیرخطی نیمه فلزات چند برابر کایرال (تزهای اسپرینگر)
سری :
نویسندگان : Miguel Ángel Sánchez Martínez
ناشر : Springer
سال نشر :
تعداد صفحات : 128
ISBN (شابک) : 9783031257704 , 3031257707
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Supervisor’s Foreword\nAbstract\nAcknowledgments\nContents\nAbbreviations\n1 Introduction\n 1.1 Experimental Signatures of Topological Metals\n 1.1.1 ARPES and the Discovery of Weyl Semimetals\n 1.1.2 The Chiral Anomaly and Negative Magnetoresistance of Weyl Semimetals\n 1.1.3 Optical Responses as Probes for Topological Phases\n 1.2 Beyond Weyl Crossings: Multifold Fermions\n 1.3 Structure of the Thesis\n References\n2 Chiral Multifold Fermions\n 2.1 Weyl Fermions\n 2.2 The Classification of Chiral Multifold Fermions\n 2.2.1 Double-Weyl Fermion\n 2.2.2 Threefold Fermion\n 2.2.3 Sixfold Fermion\n 2.2.4 Fourfold Fermion\n 2.3 Material-Oriented Tight-Binding Models of Chiral Multifold Fermions\n 2.3.1 Space Group 199\n 2.3.2 Space Group 198 and Candidate Materials\n 2.4 Conclusions\n References\n3 Linear Optical Conductivity of Chiral Multifold Fermions: kcdotp and Tight-Binding Models\n 3.1 Linear Optical Response in the Length Gauge\n 3.2 Optical Fingerprints in the Multifold kcdotp Models\n 3.2.1 Optical Conductivity of Fully Rotationally Symmetric Models\n 3.2.2 Optical Conductivity of Non-symmetric Low-Energy Models\n 3.3 Imaginary Part of the Optical Conductivity and Sum Rules\n 3.4 Optical Conductivity of Realistic Tight-Binding Models\n 3.4.1 Space Group 199\n 3.4.2 Space Group 198: RhSi\n 3.5 Conclusions\n References\n4 Linear Optical Conductivity of CoSi and RhSi: Experimental Fingerprints of Chiral Multifold Fermions in Real Materials\n 4.1 Introduction\n 4.2 CoSi\n 4.2.1 Experimental Features of the Optical Conductivity\n 4.2.2 Low-Energy Regime: kcdotp and Tight-Binding Models\n 4.2.3 The Role of Spin-Orbit Coupling and the Spin-3/2 Multifold Fermion\n 4.2.4 Summary\n 4.3 RhSi\n 4.3.1 Experimental Features of the Optical Conductivity\n 4.3.2 Low-Energy Regime: kcdotp and Tight-Binding Models\n 4.3.3 Summary\n 4.4 Conclusions\n References\n5 Nonlinear Optical Responses: Second-Harmonic Generation in RhSi\n 5.1 The Zoo of Nonlinear Responses\n 5.2 The Circular Photogalvanic Effect in RhSi\n 5.2.1 Experimental Features of the Circular Photogalvanic Effect\n 5.2.2 DFT Calculation of Circular Photogalvanic Effect in RhSi\n 5.2.3 Circular Photogalvanic Effect Calculation with a Tight-Binding Model for RhSi\n 5.3 Second-Harmonic Generation in RhSi\n 5.3.1 Second-Harmonic Generation in the Length Gauge\n 5.3.2 Second-Harmonic Generation of the Threefold Fermion at Γ: Low-Energy kcdotp Model\n 5.3.3 Experimental Features of the Second-Harmonic Generation in RhSi: Characterization with DFT Calculations\n 5.4 Comparing Low-Energy Second-Harmonic Generation Using First-Principles and kcdotp Calculations\n 5.5 Conclusions\n References\n6 Conclusions\n References\nAppendix A Optical Conductivity of a Tetrahedral Fourfold Fermion\nAppendix B Temperature and Broadening of the Step Function\nAppendix C Imaginary Part of the Optical Conductivity from the Kramers-Kronig Relations\nAppendix D Sum Rules\nAppendix E Parallelized Code for Computing Second-Harmonic Generation\nAppendix F Accounting for Many-Body Effects in the Second-Harmonic Generation of RhSi: Scissors Potential in DFT Calculations\nAppendix Curriculum Vitae\nAppendix Scientific Production\nAppendix References