توضیحاتی در مورد کتاب :
این متن آخرین پیشرفتها را در فناوری سیالات فوق بحرانی، کاتالیز زیستی، مهندسی فرآیندهای زیستی و اصلاح محصولات ارائه میکند. این یک بررسی عمیق از جدیدترین اصول و رویکردهای مورد استفاده در توسعه و طراحی لیپیدها برای محصولات آرایشی و بهداشتی، صنعتی، دارویی و غذایی ارائه می دهد. با بحث در مورد انواع آنزیمهای فعال لیپید از منابع حیوانی، گیاهی، قارچی و میکروبی، \"Lipid Biotechnology\" تکنیکهای مدرن در مهندسی ژنتیک برای اصلاح محصولات دانههای روغنی مرسوم و مسیرهای بیوسنتزی برای پلیمرهای کوتین، مواد فرار طعمی، اکسی لیپینها را پوشش میدهد. و ترکیبات ترپنوئیدی این مقاله استفاده از لیپازها و فسفولیپازها را در ایجاد لیپیدها و چربیهای ساختاریافته، از جمله کره کاکائو، چربیهای کم کالری، و Betapol و روشهای نوظهور با استفاده از دی اکسید کربن فوق بحرانی به عنوان حلال خوشخیم برای تجزیه و تحلیل لیپید، شکنش و واکنش آنزیمی نشان میدهد. همچنین شرایط واکنش، طراحی راکتور، انتخاب حلال، فناوری تثبیت و منابع آنزیمی برای تولید بهینه در مقیاس بزرگ را پوشش میدهد و تشکیل اکسی لیپینها را از طریق مسیر لیپوکسیژناز و همچنین سایر اسیدهای چرب غیر معمول را توصیف میکند. نویسندگان تجزیه و تحلیل عمیقی از ساختار، عملکردها و مکانیسمهای متابولیکی و آنزیمی، ویژگیهای دفاعی و کاتالیزوری، کاربردهای صنعتی و سایر کاربردهای اکسیلیپینها و لیپازها ارائه میکنند.
فهرست مطالب :
Cover Page......Page 1
Title Page......Page 2
ISBN: 0824706196......Page 3
Preface......Page 4
Part I. Oilseed Quality Improvement......Page 6
Part III. Lipases and Food Nutrition......Page 7
Part IV. Biocatalysts in Nonfood Applications......Page 8
Contributors......Page 9
1 Introduction......Page 14
2.1 ACCase......Page 17
2.4 Stearoyl-ACP Desaturase......Page 18
3 Potential Metabolic Engineering Targets for Increasing Oil Yield......Page 19
3.1 Will Alterations in Expresion of ACCase Lead to Higher Levels of Fatty Acid Biosynthesis?......Page 20
3.1.2 Can the Heteromeric ACCase Be Manipulated to Increase Oil Content......Page 21
3.2 Additional Factors That May Limit Fatty Acid Biosynthesis......Page 22
4.1 Production of High-Stearate Oilseeds......Page 23
4.2 Modification of Unsaturated Fatty Acid Composition......Page 24
5.1 Laurate Overproduction......Page 25
5.1.1 Laurate Catabolism May Limit Production in Leaves and Seeds......Page 26
5.1.2 Additional Genes May be Required for High Laurate Production......Page 27
5.2 Production of Unusual Monoenoic Fatty Acids......Page 28
5.2.1 Can ACP Isoforms Serve as a Controlling Point in Fatty Acid Biosynthesis......Page 29
5.2.3 Ferredoxin Isoforms Further Influence the Rate of Acyl-ACP Desaturases......Page 30
6 Summary and Future Trends in Metabolic Engineering Projects: Functional Genomics......Page 32
6.1 Gene Discovery......Page 33
7 Summary......Page 34
References......Page 36
1 INTRODUCTION......Page 39
3 TRIACYLGLYCEROL ACCUMULATION IN DEVELOPING SEEDS\rAND CULTURES......Page 40
4 TRIACYLGLYCEROL BIOSYNTHESIS......Page 41
4.1 sn-Glycerol-3-phosphate Acyltransferase......Page 43
4.2 Lysophosphatidate Acyltransferase......Page 44
4.3 Phosphatidate Phosphatase......Page 45
4.4 Diacylglycerol Acyltransferase......Page 47
4.7 Lysophosphatidylcholine Acyltransferase......Page 51
4.9 Incorporation of Unusual Fatty Acids into Triacylglycerol......Page 52
5 ACYLTRANSFERASES AND PHOSPHATIDATE PHOSPHATASE\rIN PLASTIDS......Page 53
6 TRIACYLGLYCEROL ACCUMULATION IN DEVELOPING\rPOLLEN GRAINS......Page 54
7 EFFECT OF ENVIRONMENT ON TAG ACCUMULATION......Page 56
8 GENETIC ENGINEERING OF TRIACYLGLYCEROL ACCUMULATION......Page 58
9 CONCLUSIONS AND FUTURE PERSPECTIVES......Page 59
REFERENCES......Page 60
1 INTRODUCTION......Page 69
3 FATTY ACID SYNTHESIS......Page 70
4.1 Theta-9 Desaturases......Page 72
4.2 Theta-12 Desaturases......Page 74
4.3 w-3 Desaturases......Page 76
5 ACYLTRANSFERASES......Page 79
6 FACTORS AFFECTING TAG ACCUMULATION......Page 81
7.1 Gamma-Linolenic Acid and Octadecatetraenoic Acids......Page 82
7.3 Epoxy and Acetylenic Fatty Acids......Page 83
7.4 Metabolism of Unusual Fatty Acids......Page 85
8.1 Transformation/Regeneration Systems......Page 86
8.2 Somatic Embryogenesis......Page 87
REFERENCES......Page 91
1 INTRODUCTION......Page 97
2 INDUSTRIAL USES OF EDIBLE OILS FROM\rTRANSGENIC OILSEEDS......Page 98
3 POTENTIAL FOR REPLACEMENT OF CHEMICALLY MODIFIED\rINDUSTRIAL OILS AND EXOTIC PLANT OILS WITH GENETICALLY \rMODIFIED OILS......Page 100
4 NOVEL FATTY ACIDS AS INDUSTRIAL FEEDSTOCKS......Page 101
6 CURRENT LIMITATIONS TO THE PRODUCTION OF NOVEL FATTY\rACIDS IN TRANSGENIC PLANTS......Page 102
7 PROTEIN ENGINEERING TO PRODUCE HIGHLY SPECIALIZED\rINDUSTRIAL FATTY ACIDS......Page 103
REFERENCES......Page 104
1 INTRODUCTION......Page 106
2.1 Reduction of Linolenic Acid Concentration......Page 107
2.2 Elevation of Linolenic Acid Concentration......Page 109
3.1 Elevation of Palmitic Acid Concentration......Page 111
3.2 Reduction of Palmitic Acid Concentration......Page 114
3.3 Elevation of Stearic Acid Concentration......Page 115
4.1 Current Oilseed Industry Issues......Page 117
4.2 Combination of Genetic Traits for Improved General-Purpose Applications of Soybean Oil......Page 118
4.3 Combination of Genetic Traits for Low-trans Isomer Margarine......Page 119
4.4 Combination of Genetic Traits for Improved Industrial Applications of Soybean Oil......Page 122
REFERENCES......Page 123
1 INTRODUCTION......Page 125
2.2 Introduction of the Sun•ower to Europe......Page 126
3 TRADITIONAL SUNFLOWER OIL......Page 127
4 INDUSTRY INITIATIVE TO REDESIGN SUNFLOWER OIL......Page 128
5.2 Genetic Studies......Page 131
5.3.3 High-Oleic * High-Oleic Crosses with Differing Numbers\rof Modi•er Genes......Page 132
6.2 Flavor Characteristics......Page 133
6.3 Frying Characteristics......Page 135
8 FUTURE OUTLOOK......Page 136
ACKNOWLEDGMENTS......Page 137
REFERENCES......Page 138
1 INTRODUCTION......Page 139
2 BIOSYNTHESIS OF RICINOLEATE......Page 140
3 ALTERED FATTY ACID COMPOSITION IN TRANSGENIC PLANTS......Page 143
4 CASTOR-OIL BIOSYNTHESIS......Page 144
REFERENCES......Page 148
1 INTRODUCTION......Page 150
2 EVIDENCE FOR THE INVOLVEMENT OF THE LIPOXYGENASE PATHWAY IN PLANT DEFENSE AGAINST PATHOGENS......Page 151
3.1 Antifungal Oxylipins from Rice......Page 152
3.2 Mechanisms of Antifungal Oxylipin Synthesis......Page 154
3.3.2 Involvement of Chloroplasts in Oxylipin Synthesis......Page 155
3.3.3 Does Jasmonate Play a Role in Phytoalexin Synthesis in Rice?......Page 157
4.1 Multiple Lipoxygenases in Defense......Page 158
4.2 Photosynthetic Cultured Soybean Cells as a Tool\r for Investigating Plant Defense......Page 159
5 CONCLUSIONS......Page 161
REFERENCES......Page 162
1 INTRODUCTION......Page 165
2.1 General Properties of LOX......Page 166
2.2 Factors Affecting Oxidation Speci•city......Page 167
2.4 Multiple Dioxygenations of Polyenoic Fatty Acids......Page 168
2.5 LOX Oxygenation of B Gamma-Unsaturated Carbonyl Compounds......Page 171
2.6 LOX Oxidation of Complex Lipids and Biomembranes......Page 173
2.7 Modi•ed Fatty Acid Substrates and ‘‘Tailored’’ Oxidations......Page 174
2.8 Maximizing Yields of Hydroperoxides......Page 175
3.2 Physiological Activity of Fatty Acid Hydroperoxides and Hydroxy Derivatives......Page 177
4 OXYGEN-DEFICIENT LOX AND ‘‘HOMOLYTIC’’ HYDROPEROXIDE LYASE......Page 178
5.1 General......Page 180
5.2 Aldehyde Products......Page 181
5.4 Substrate Specifcity......Page 182
5.6 Physiological Signi•cance of HETLS......Page 184
REFERENCES......Page 185
1.1 General Properties......Page 191
1.2 Noncyclic Fatty Acid and Macrolactone Products......Page 192
1.3 Cyclic Fatty Acid Products......Page 193
1.4 Occurrence......Page 194
2.1 Occurrence of Divinyl Ethers......Page 195
2.2 Biosynthesis of Divinyl Ethers......Page 196
2.3 Geometrical Isomerism of Divinyl Ethers......Page 198
3 EPOXY ALCOHOL SYNTHASE......Page 199
4.1 Peroxygenase Pathway......Page 201
4.3 Oxidation of Carotenoids......Page 202
5.2 Base Catalysis......Page 203
5.3 Alkoxyl Radical Rearrangement......Page 205
6 CONCLUSION......Page 206
REFERENCES......Page 207
1 INTRODUCTION......Page 210
2.1 Occurrence......Page 212
2.2.2 Early Events at the Cell Membrane......Page 213
2.2.3 Initiation of JA Biosynthesis......Page 215
2.2.4 First Steps of JA Biosynthesis Occur in Plastids......Page 216
2.3 Jasmonate Signaling......Page 219
2.4.2 Plant Defense......Page 220
2.5 Jasmonates: Active Compounds......Page 221
3.1 Discovery of Isoprostanoids......Page 223
3.2.1 Formation of the PGG-Ring System......Page 225
3.2.2 PGG-like Compounds Are Precursors of a Variety of Prostanoids/Isoprostanoids......Page 226
3.3.2 Plant Isoprostanoids......Page 229
3.4 Significance of Isoprostanoids......Page 230
REFERENCES......Page 231
1 INTRODUCTION......Page 237
2.1 Composition of the Cutin Biopolymer......Page 238
2.2 Biosynthesis of the C-16 Cutin Monomer Family......Page 239
2.3.2 Epoxidation Step Catalyzed by Diiron Proteins?......Page 241
2.3.3 Epoxidation Step Catalyzed by Peroxygenases?......Page 242
2.3.4 Epoxide Hydration Step......Page 243
2.4 Biosynthetic Schemes......Page 244
2.5 Formation of Cuticle......Page 246
3.2 Cutin Monomers as Signal Molecules Used by Pathogens......Page 247
3.3 Cutin Monomers as Signal Molecules Used by Plants......Page 248
4 CONCLUSION......Page 250
REFERENCES......Page 251
1 INTRODUCTION......Page 255
2.1 Overview of Marine LOX Products......Page 256
2.2 Overview of Types of Fatty Acid Substrates Used to Form Marine Oxylipins......Page 258
2.4 Overview of Functional Group Types Observed in Marine Oxylipins......Page 259
3.1.1 Polyenes from Ptilota •licina......Page 261
3.1.2 Polycyclic or Halogenated Oxylipins......Page 262
3.1.3 Yendolipin, a Betaine from Neodilsea yendoana......Page 264
3.1.4 Mammalian-Type Prostaglandins from Gracilaria sp.......Page 265
3.2 Chlorophyta......Page 267
3.3 Phaeophyceae (Brown Algae)......Page 268
3.3.1 Ecklonialactones from Ecklonia stolonifera and Egregiachlorides from Egregia menziesii......Page 269
3.4.2 Biosynthesis of the Algal Pheromone Hormosirene......Page 270
3.4.3 Biosynthesis of Furan Fatty Acids......Page 272
4.1 Clavirins from Clavularia virdis......Page 273
4.2 Punaglandins from Telesto riisei......Page 275
4.3 Prostaglandin Biosynthesis in Gersemia fruticosa......Page 276
5.2 Amphimic Acid from Amphimedon sp.......Page 277
6.1 Aplydilactone from Aplysia kurodai......Page 278
REFERENCES......Page 279
1 INTRODUCTION......Page 282
2.1 Cytochrome P-450 and Fatty Acid w-Hydroxylases......Page 283
2.3 Fatty Acid w1-, w2-, w3-, and w4-Hydroxylases\r of Fusarium oxysporum......Page 284
3 FATTY ACID DIOXYGENASES......Page 285
3.1.2 Lipoxygenase Activity of Saprolegnia parasitica and Pityrosporum orbiculare......Page 286
3.1.3 Manganese Lipoxygenase of Gaeumannomyces graminis......Page 287
3.1.4 Lipoxygenase Activity of Fusarium oxysporum......Page 289
3.2.3 Linoleate Diol Synthase of G. graminis......Page 290
5 SUMMARY AND PERSPECTIVES......Page 293
REFERENCES......Page 294
1 INTRODUCTION......Page 297
2 VOLATILES FORMED BY LIPOXYGENASE (IN-CHAIN OXIDATION)......Page 298
2.1 C6 Volatiles......Page 299
2.3 C8 Volatiles......Page 302
2.4 Jasmonic Acid Derivatives......Page 304
3.1 Carboxylic Acids......Page 305
3.2 Lactones......Page 306
3.3 Aldehydes......Page 311
3.4 Methyl Ketones......Page 312
4.1 Lipases......Page 314
4.2 Alcohol Acyltransferase......Page 316
5.2 1,3-Dioxanes......Page 317
REFERENCES......Page 318
1 TERPENOIDS AS LIPIDS......Page 323
2 BIOLOGICALLY ACTIVE TERPENOIDS: OCCURRENCE IN PLANT PARTS......Page 324
3.1 Constitutive Terpenoids in Plants......Page 329
3.2 Induced Terpenoids in Plants......Page 331
3.3.1 Terpenoids Toxic to Pests......Page 335
3.3.2 Terpenoids Involved in Behavioral Changes......Page 339
3.4.1 Attraction of Deleterious Organisms to Pests......Page 340
3.5.1 Use of Terpenoids by Pests to Locate the Producing Organisms......Page 341
3.5.2 Use/Storage of Plant Constituents by Pests for Their Own Protection......Page 342
4.1 Terpenoid Defenses in Macrophytic Algae......Page 343
4.2 Terpenoids in Lichens......Page 348
4.3 Terpenoid Defenses in Other Organisms......Page 350
REFERENCES......Page 352
1.1 Introduction......Page 360
2.1 General Aspects......Page 361
2.4 The Flap of Candida rugosa Lipase......Page 362
2.5 Two Conformational States: Open and Closed Forms......Page 363
2.6 Oxyanion Hole......Page 364
4 CONFORMATIONAL CHANGES IN OTHER LIPASES......Page 365
6 KINETIC MODEL FOR LIPOLYSIS OF INSOLUBLE LIPIDS......Page 366
7 REACTIONS CATALYZED BY LIPASES AND MOLECULAR MECHANISM OF CATALYSIS......Page 368
8.2 Positional Specificity......Page 371
8.4 Fatty Acid Specificity......Page 372
9.1 Enzymatic Interesteri•cation in Microaqueous Organic Solvent Systems......Page 373
9.2 Immobilization......Page 374
9.2.1 Factors Affecting Immobilized Lipase Activity......Page 376
9.3 Enzymatic Interesteri•cation Reactors......Page 378
9.3.1 Fixed-Bed Reactor......Page 379
9.3.2 Stirred-Batch Reactor......Page 380
9.3.4 Membrane Reactors......Page 381
9.4.1 pH......Page 382
9.4.3 Water Content and Water Activity......Page 383
9.4.5 Substrate Composition and Steric Hindrance......Page 384
9.4.7 Product Accumulation......Page 385
REFERENCES......Page 386
1 INTRODUCTION TO LIPASES......Page 390
2.2 Regioselective Lipases......Page 391
3.1 Hydrolysis of Esters......Page 392
3.2 Synthesis of Esters......Page 393
3.3 Transesterification (Interesteri•cation)......Page 394
3.4 Synthesis of Structured Lipids......Page 395
3.6 Enantioresolution of Esters......Page 396
REFERENCES......Page 398
2 CHARACTERISTICS AND APPLICATIONS OF PLANT LIPASES AS BIOCATALYSTS......Page 401
2.1.1 Triacylglycerol Lipases from Oilseeds......Page 402
2.1.3 Triacylglycerol Lipases from Cereals......Page 409
2.1.4 Triacylglycerol Lipases from Miscellaneous Plants......Page 410
2.3 Phospholipases......Page 412
2.3.1 Phospholipase D from Cabbage......Page 413
3 SUMMARY AND PERSPECTIVES......Page 414
REFERENCES......Page 415
1 INTRODUCTION......Page 417
2.1 Use of PLA2 and Lipase......Page 418
2.2 Production of Lysolecithin......Page 419
2.4 Introduction of Particular Fatty Acids into PLs by Enzymes......Page 420
3.1 Transphosphatidylation by PLD......Page 422
3.3 Acceptor Compounds for Transphosphatidylation......Page 423
3.5 Use of Actinomycete PLDs for Transphosphatidylation......Page 425
4.2 Sphingolipid-Related Enzymes......Page 427
5 CONCLUDING REMARKS AND FUTURE PERSPECTIVES......Page 429
REFERENCES......Page 430
1 INTRODUCTION......Page 432
2 ENZYMATIC SYNTHESIS OF STRUCTURED LIPIDS......Page 433
2.2 Selectivity and Speci•city of Lipases......Page 434
2.3 Mechanism of Lipase Action in Low-Water Media......Page 436
3.1 Hydrolysis......Page 437
3.2 Direct Esteri•cation......Page 438
3.3.1 Acidolysis......Page 439
3.3.2 Alcoholysis......Page 440
3.3.3 Interesterification......Page 441
3.4.2 Substrate and Product Effects......Page 442
3.4.3 Temperature......Page 443
3.4.5 Solvent System......Page 444
3.4.6 Acyl Migration......Page 445
4 STRUCTURED LIPIDS TARGETED FOR NUTRITIVE AND THERAPEUTIC PURPOSES......Page 446
5 STRUCTURED LIPIDS TARGETED FOR FUNCTIONAL APPLICATIONS......Page 448
7 METHODS FOR LARGE-SCALE PRODUCTION OF STRUCTURED LIPIDS......Page 449
7.1 Plug Flow and Packed-Bed Reactors......Page 450
7.3 Stirred-Tank Batch Reactors......Page 451
8 DOWNSTREAM PROCESSING OF SL......Page 452
9 ADVANTAGES OF ENZYMATIC SYNTHESIS......Page 453
10.3 Regulatory and Safety Aspects......Page 454
REFERENCES......Page 455
2 BETAPOL AND OTHER SPECIALTY FATS FOR INFANT FORMULA......Page 460
3 COCOA BUTTER EQUIVALENTS AND COCOA-BUTTER-LIKE FATS......Page 468
4 MARGARINE AND OTHER PLASTIC FATS......Page 473
REFERENCES......Page 475
1 GENERAL OVERVIEW......Page 478
2 CHARACTERIZATION OF MILKFAT......Page 480
4 ENGINEERING OF MILKFAT......Page 481
4.1 Modification by Hydrolysis......Page 482
4.3 Modification by Acidolysis......Page 484
4.4 Modification by Alcoholysis......Page 485
5 FROM BENCH SCALE TO INDUSTRIAL SCALE......Page 486
7 MARKETING CONCERNS......Page 487
8 FUTURE PROSPECTS......Page 488
REFERENCES......Page 489
2 FUNCTION AND APPLICATION OF TARGET PUFA......Page 492
3.2 Substrate Speci•city of Lipase......Page 493
3.2.1 Fatty Acid Specificity......Page 494
3.2.2 Positional Specificity......Page 495
3.2.4 Glyceride Specificity......Page 496
4.1 Production of DHA-Rich Oil from Tuna Oil......Page 497
4.2 Production of GLA-Rich Oil from Borage Oil......Page 498
4.3 Production of AA-Rich Oil from Mortierella Single-Cell Oil......Page 499
4.4 A Method Available for Industrial Puri•cation of PUFA-Rich Oil......Page 500
4.5 Reaction Mechanism of Selective Hydrolysis......Page 501
5.1.2 Second Step: Selective Esteri•cation......Page 502
5.2.1 First Step: Hydrolysis of Tuna Oil......Page 503
5.2.2 Second Step: Selective Esteri•cation......Page 504
5.3.2 Large-Scale Purification......Page 506
5.4 Purification of n-6 PUFA by the Two-Step Enzymatic Method......Page 509
REFERENCES......Page 511
1 INTRODUCTION......Page 515
4 PHOSPHOLIPASE A2 AND LIPASE TO TAILOR-MADE n-3 PUFA-BOUND PHOSPHATIDYLCHOLINE......Page 516
5 BIOCONVERSION AT THE sn-1 POSITION OF AN sn-2 PUFA-BOUND PHOSPHATIDYLCHOLINE......Page 520
6 APPLICATION OF A PARTIAL HYDROLYTIC REACTION FOR PRODUCING TAILOR-MADE PHOSPHOLIPIDS CONTAINING DHA......Page 521
7 MODIFICATION OF POLAR HEAD OF PHOSPHOLIPID CONTAINING n-3 PUFA......Page 522
REFERENCES......Page 523
1 INTRODUCTION......Page 525
2 ANTICANCER (PACLITAXEL SEMISYNTHESIS)......Page 526
3 THROMBOXANE A2 ANTAGONIST......Page 529
4 ANGIOTENSIN-CONVERTING ENZYME INHIBITORS......Page 531
5 ANTICHOLESTEROL DRUGS......Page 536
6 ANTIPSYCHOTIC AGENTS......Page 540
7 POTASSIUM CHANNEL OPENERS......Page 541
8 ANTI-INFLAMMATORY DRUGS......Page 542
9 ANTI-INFECTIVE DRUGS......Page 543
10 ANTIVIRAL AGENTS......Page 547
11 PROSTAGLANDINS SYNTHESIS......Page 549
12 CALCIUM CHANNEL ANTAGONISTS......Page 551
13 ANTIARRHYTHMIC AGENTS......Page 552
14 IMMUNOSUPPRESSIVE AGENT (15S-DEOXYSPERGAULIN)......Page 553
REFERENCES......Page 555
1 INTRODUCTION......Page 560
2.1 Arachidonic Acid......Page 561
2.2 Dihomo-Gamma-linolenic Acid......Page 562
2.4 Rare PUFAs......Page 564
3.1 5-Desaturase-Defective Mutants......Page 566
3.4 9-Desaturase-Defective Mutant......Page 568
REFERENCES......Page 569
2 HYDROXYLATION REACTIONS......Page 572
2.1 Substrates......Page 573
3 DEHYDROGENATION REACTIONS......Page 574
4 OTHER REACTIONS......Page 576
5.1 New Biocatalysts......Page 577
5.2.1 Immobilization......Page 579
5.2.2 Low-Water Environments......Page 580
REFERENCES......Page 581
1 INTRODUCTION......Page 583
2 LIPASE-CATALYZED FATTY ACID ESTER SYNTHESIS......Page 585
2.1 Enzymatic Conversion of Triglycerides to Alkyl Esters......Page 586
2.2 Enzymatic Conversion of Greases to Biodiesel......Page 590
2.3 Enzymatic Conversion of Soapstocks to Biodiesel......Page 592
4 CONCLUSION......Page 593
REFERENCES......Page 594
2 PRODUCTION OF FATTY ACID ESTERS BY LIPASE-CATALYZED\rALCOHOLYSIS......Page 595
3 PRODUCTION OF CARBOHYDRATE ESTERS BY LIPASECATALYZED HYDROLYSIS OR ALCOHOLYSIS......Page 596
4 LIPASE-CATALYZED SYNTHESIS OF PROPYLENE GLYCOL FATTY ACID ESTERS AND PUFA-BASED EMULSIFIERS......Page 597
6 CONCLUDING REMARKS......Page 598
REFERENCES......Page 599
1 INTRODUCTION......Page 601
2.1 Polyhydroxyalkanoates......Page 602
3 w-HYDROXY FATTY ACIDS......Page 603
4 DICARBOXYLIC ACIDS......Page 604
5 10-HYDROXYSTEARIC ACID AND 10-KETOSTEARIC ACID......Page 605
6.1 Fatty Acid Conversion by Pseudomonas sp.......Page 608
6.3 Potential Uses of Multihydroxy Fatty Acids......Page 609
6.4 Relationship with Phenazine 1-Carboxylic Acid Accumulation......Page 611
8 WAX ESTERS......Page 612
8.1 Biosynthesis and Gene Analysis of Wax Ester Formation......Page 613
9 SPHINGOLIPIDS AND SPHINGOIDS......Page 614
10 FURANS AND LACTONES......Page 615
12 CONCLUDING REMARKS......Page 618
REFERENCES......Page 619
2 PROPERTIES OF BIOSURFACTANTS......Page 625
2.1 Surface Activity and Critical Micelle Concentration......Page 626
2.2 Classi•cation of Biosurfactants......Page 627
3.1.1 Rhamnolipids......Page 629
3.1.2 Trehalolipids......Page 630
3.1.4 Other Glycolipids......Page 632
3.2 Lipopeptides......Page 633
4.1 Rhamnolipid......Page 634
4.2 Surfactin......Page 637
5.2 Growth Stage and Limiting Nutrients......Page 639
6.1.1 Biodegradation of Organics......Page 641
6.1.2 Biosurfactants as a Flushing Agent: Organics......Page 642
6.1.3 Rhamnolipid as a Flushing Agent: Metals......Page 643
6.2 Use in Industrial Processes......Page 644
6.4 Production of Fine Chemicals......Page 645
7 SUMMARY......Page 646
REFERENCES......Page 647
1 INTRODUCTION......Page 651
2.1 Lipolase......Page 652
2.2 Pseudomonas Lipases......Page 653
2.4 Interaction of Cutinase with Surfactants......Page 655
ACKNOWLEDGMENTS......Page 656
REFERENCES......Page 657
1 INTRODUCTION......Page 658
2 FUNDAMENTALS OF CRITICAL FLUID TECHNOLOGY AS APPLIED TO LIPIDS......Page 659
3 CRITICAL FLUID EXTRACTION OF LIPIDS AND OILS......Page 665
4 FRACTIONATION OF LIPIDS USING SUPERCRITICAL FLUIDS......Page 668
5 LIPID REACTION CHEMISTRY IN SUPERCRITICAL FLUIDS......Page 674
6 CONCLUDING REMARKS......Page 679
REFERENCES......Page 680
2.1 Supercritical Fluid as an Enzyme Reaction Medium......Page 683
2.2 Enzymes in Supercritical Fluids......Page 684
2.3 Comparison of Supercritical Fluid with Organic Solvent as Enzyme Reaction Media......Page 686
3.1 Effect of Pressure......Page 687
3.2 Effect of Substrate Solubility......Page 690
3.3 Effect of Water......Page 691
4.2 Food and Pharmaceutical Area......Page 692
5 CONCLUDING REMARKS......Page 694
REFERENCES......Page 695
توضیحاتی در مورد کتاب به زبان اصلی :
This text presents the latest advances in supercritical fluid technology, biocatalysis, bioprocess engineering, and crop breeding. It offers an in-depth review of the most recent principles and approaches utilized in the development and design of lipids for cosmetic, industrial and pharmaceutical, and food products. Discussing a variety of lipid-active enzymes from animal, plant, fungal, and microbial sources, "Lipid Biotechnology" covers modern techniques in genetic engineering for the modification of conventional oilseed crops and biosynthetic pathways for cutin polymers, flavor volatiles, oxylipins, and terpenoid compounds. It chronicles the use of lipases and phospholipases in the creation of structured lipids and fats, including cocoa butter, low-calorie fats, and Betapol, and emerging methods using supercritical carbon dioxide as a benign solvent for lipid analysis, fractionation, and enzymatic reaction. It also covers reaction conditions, reactor design, solvent selection, immobilization technology, and enzyme sources for optiml large-scale manufacturing, and describes the formation of oxylipins through the lipoxygenase pathway, as well as other unusual fatty acids. The authors provide in-depth analyses of the structure, metabolic and enzymatic functions and mechanisms, defensive and catalytic properties, industrial uses, and other applications of oxilipins and lipases.