توضیحاتی در مورد کتاب Logic for computer science and artificial intelligence
نام کتاب : Logic for computer science and artificial intelligence
عنوان ترجمه شده به فارسی : منطق برای علوم کامپیوتر و هوش مصنوعی
سری :
نویسندگان : Caferra, Ricardo
ناشر : ISTE, Wiley
سال نشر : 2011
تعداد صفحات : 537
ISBN (شابک) : 9781848213012 , 1848213018
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 5 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب نتیجه آزمایش شده در کلاس درس از چندین سال تدریس در گرنوبل INP (Ensimag) است. در نظر گرفته شده است که به یک مبتدی با دانش پایه در ریاضیات و علوم کامپیوتر امکان آموزش خودآموز را می دهد، اما برای استفاده در دوره های سنتی نیز بسیار مناسب است. خواننده با مفاهیم با انگیزه واضح، مقدمه ها، اظهارات تاریخی، یادداشت های جانبی مربوط به ارتباط با سایر رشته ها، و تمرین های متعدد همراه با راه حل های دقیق هدایت می شود. ابزارهای مورد نیاز برای رسیدن به پیاده سازی های عملی مفاهیم و تکنیک های مورد بحث را در اختیار خواننده قرار می دهد و امکان طراحی الگوریتم هایی برای حل مسائل را فراهم می کند.
فهرست مطالب :
Content: Chapter 1 Introduction 1 --
1.1 Logic, foundations of computer science, and applications of logic to computer science 1 --
1.2 On the utility of logic for computer engineers 3 --
Chapter 2 A Few Thoughts Before the Formalization 7 --
2.1 What is logic? 7 --
2.1.1 Logic and paradoxes 8 --
2.1.2 Paradoxes and set theory 9 --
l2.1.2.1 The answer 10 --
2.1.3 Paradoxes in arithmetic and set theory 13 --
2.1.3.1 The halting problem 13 --
2.1.4 On formalisms and well-known notions 15 --
2.1.4.1 Some \"well-known\" notions that could turn out to be difficult to analyze 19 --
2.1.5 Back to the definition of logic 23 --
2.1.5.1 Some definitions of logic for all 24 --
2.1.5.2 A few more technical definitions 24 --
2.1.5.3 Theory and meta-theory (language and meta-language) 30 --
2.1.6 A few thoughts about logic and computer science 30 --
2.2 Some historic landmarks 32 --
Chapter 3 Propositional Logic 39 --
3.1 Syntax and semantics 40 --
3.1.1 Language and meta-language 43 --
3.1.2 Transformation rules for cnf and dnf 49 --
3.2 The method of semantic tableaux 54 --
13.2.1 A slightly different formalism: signed tableaux 58 --
3.3 Formal systems 64 --
3.3.1 A capital notion: the notion of proof 64 --
3.3.2 What do we learn from the way we do mathematics? 72 --
3.4 A formal system for PL (PC) 78 --
3.4.1 Some properties of formal systems 84 --
3.4.2 Another formal system for PL (PC) 86 --
3.4.3 Another formal system 86 --
3.5 The method of Davis and Putnam 92 --
3.5.1 The Davis-Putnam method and the SAT problem 95 --
3.6 Semantic trees in PL 96 --
3.7 The resolution method in PL 101 --
3.8 Problems, strategies, and statements 109 --
3.8.1 Strategies 110 --
3.9 Horn clauses 113 --
3.10 Algebraic point of view of propositional logic 114 --
Chapter 4 First-order Terms 121 --
4.1 Matching and unification 121 --
4.1.1 A motivation for searching for a matching algorithm 121 --
4.1.2 A classification of trees 123 --
4.2 First-order terms, substitutions, unification 125 --
Chapter 5 First-Order Logic (FOL) or Predicate Logic (PL1, PC1) 131 --
5.1 Syntax 133 --
5.2 Semantics 137 --
5.2.1 The notions of truth and satisfaction 139 --
5.2.2 A variant: multi-sorted structures 150 --
5.2.2.1 Expressive power, sort reduction 150 --
5.2.3 Theories and their models 152 --
5.2.3.1 How can we reason in FOL? 153 --
5.3 Semantic tableaux in FOL 154 --
5.4 Unification in the method of semantic tableaux 166 --
5.5 Toward a semi-decision procedure for FOL 169 --
5.5.1 Prenex normal form 169 --
5.5.1.1 Skolemization 174 --
5.5.2 Skolem normal form 176 --
5.6 Semantic trees in FOL 186 --
5.6.1 Skolemization and clausal form 188 --
5.7 The resolution method in FOL 190 --
5.7.1 Variables must be renamed 201 --
5.8 A decidable class: the monadic class 202 --
5.8.1 Some decidable classes 205 --
5.9 Limits: Gödel\'s (first) incompleteness theorem 206 --
Chapter 6 Foundations of Logic Programming 213 --
6.1 Specifications and programming 213 --
6.2 Toward a logic programming language 219 --
6.3 Logic programming: examples 222 --
6.3.1 Acting on the execution control: cut\"/\" 229 --
6.3.1.1 Translation of imperative structures 231 --
6.3.2 Negation as failure (NAF) 232 --
6.3.2.1 Some remarks about the strategy used by LP and negation as failure 238 --
6.3.2.2 Can we simply deduce instead of using NAF? 239 --
6.4 Computability and Horn clauses 241 --
Chapter 7 Artificial Intelligence 245 --
7.1 Intelligent systems: AI 245 --
7.2 What approaches to study AI? 249 --
7.3 Toward an operational definition of intelligence 249 --
7.3.1 The imitation game proposed by Turing 250 --
7.4 Can we identify human intelligence with mechanical intelligence? 251 --
7.4.1 Chinese room argument 252 --
7.5 Some history 254 --
7.5.1 Prehistory 254 --
7.5.2 History 255 --
7.6 Some undisputed themes in AI 256 --
Chapter 8 Inference 259 --
8.1 Deductive inference 260 --
8.2 An important concept: clause subsumption 266 --
8.2.1 An important problem 268 --
8.3 Abduction 273 --
8.3.1 Discovery of explanatory theories 274 --
8.3.1.1 Required conditions 275 --
8.4 Inductive inference 278 --
8.4.1 Deductive inference 279 --
8.4.2 Inductive inference 280 --
8.4.3 Hempel\'s paradox (1945) 280 --
8.5 Generalization: the generation of inductive hypotheses 284 --
8.5.1 Generalization from examples and counter examples 288 --
Chapter 9 Problem Specification in Logical Languages 291 --
9.1 Equality 291 --
9.1.1 When is it used? 292 --
9.1.2 Some questions about equality 292 --
9.1.3 Why is equality needed? 293 --
9.1.4 Whatis equality? 293 --
9.1.5 How to reason with equality? 295 --
9.1.6 Specification without equality 296 --
9.1.7 Axiomatization of equality 297 --
9.1.8 Adding the definition of = and using the resolution method 297 --
9.1.9 By adding specialized rules to the method of semantic tableaux 299 --
9.1.10 By adding specialized rules to resolution 300 --
9.1.10.1 Paramodulation and demodulation 300 --
9.2 Constraints 309 --
9.3 Second Order Logic (SOL): a few notions 319 --
9.3.1 Syntax and semantics 324 --
9.3.1.1 Vocabulary 324 --
9.3.1.2 Syntax 325 --
9.3.1.3 Semantics 325 --
Chapter 10 Non-classical Logics 327 --
l0.l Many-valued logics 327 --
10.1.1 How to reason with p-valued logics? 334 --
10.1.1.1 Semantic tableaux for p-valued logics 334 --
10.2 Inaccurate concepts: fuzzy logic 337 --
10.2.1 Inference in FL 348 --
10.2.1.1 Syntax 349 --
10.2.1.2 Semantics 349 --
10.2.2 Herbrand\'s method in FL 350 --
10.2.2.1 Resolution andFL 351 --
10.3 Modal logics 353 --
10.3.1 Toward a semantics 355 --
10.3.1.1 Syntax (language of modal logic) 357 --
10.3.1.2 Semantics 358 --
10.3.2 How to reason with modallogics? 360 --
10.3.2.1 Formal systems approach 360 --
10.3.2.2 Translation approach 361 --
10.4 Some elements of temporal logic 371 --
10.4.1 Temporal operators and semantics 374 --
10.4.1.1 A famous argument 375 --
10.4.2 A temporal logic 377 --
10.4.3 How to reason with temporal logics? 378 --
10.4.3.1 The method of semantic tableaux 379 --
10.4.4 An example of a PL for linear and discrete time
PTL (or PLTL) 381 --
10.4.4.1 Syntax 331 --
10.4.4.2 Semantics 382 --
10.4.4.3 Method of semantic tableaux for PLTL (direct method) 333 --
Chapter 11 Knowledge and Logic: Some Notions 385 --
11.1 What is knowledge? 335 --
11.2 Knowledge and modal logic 389 --
11.2.1 Toward a formalization 389 --
11.2.2 Syntax 339 --
11.2.2.1 What expressive power? An example 389 --
11.2.2.2 Semantics 339 --
11.2.3 New modal operators 391 --
11.2.3.1 Syntax (extension) 391 --
11.2.3.2 Semantics (extension) 391 --
11.2.4 Application examples 392 --
11.2.4.1 Modeling the muddy children puzzle 392 --
11.2.4.2 Corresponding Kripke worlds 392 --
11.2.4.3 Properties of the (formalization chosen for the) knowledge 394 --
Chapter 12 Solutions to the Exercises 395.
توضیحاتی در مورد کتاب به زبان اصلی :
This book is the classroom-tested result of several years of teaching at Grenoble INP (Ensimag). It is conceived to allow self-instruction for a beginner with basic knowledge in Mathematics and Computer Science, but is also highly suitable for use in traditional courses. The reader is guided by clearly motivated concepts, introductions, historical remarks, side notes concerning connections with other disciplines, and numerous exercises, complete with detailed solutions. It provides the reader with the tools needed to arrive naturally at practical implementations of the concepts and techniques discussed, allowing for the design of algorithms to solve problems.