توضیحاتی در مورد کتاب Luminescence Spectroscopy of Semiconductors
نام کتاب : Luminescence Spectroscopy of Semiconductors
عنوان ترجمه شده به فارسی : طیف سنجی لومینسانس نیمه هادی ها
سری :
نویسندگان : Ivan Pelant, Jan Valenta
ناشر : Oxford University Press
سال نشر : 2012
تعداد صفحات : 557
ISBN (شابک) : 0199588333 , 9780199588336
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Contents
1. Introduction
References
2. Experimental techniques of luminescence spectroscopy
2.1 Emission and excitation spectra
2.2 Types of photodetectors
2.3 Monochromators and spectrographs
2.3.1 Dispersion and resolving power
2.3.2 Throughput of monochromators and spectrographs
2.4 Signal detection methods in luminescence spectroscopy
2.4.1 Phase-synchronous detection
2.4.2 Photon counting
2.5 Signal-to-noise ratio in a scanning monochromator
2.6 Fourier luminescence spectroscopy
2.7 Spectral corrections
2.8 Influence of slit opening on the shape of emission spectra
2.9 Time-resolved luminescence measurements
2.9.1 Direct imaging of the luminescence response
2.9.2 Phase-shift method
2.9.3 Time-correlated photon counting
2.9.4 Boxcar integrator
2.9.5 Streak camera
2.10 Problems
References
3. Kinetic description of luminescence processes
3.1 Radiative and non-radiative recombination. Luminescence quantum yield
3.2 Monomolecular process
3.3 Bimolecular process
3.4 Stretched exponential
3.5 Multiple processes present simultaneously
3.6 Problems
References
4. Phonons and their participation in optical phenomena
4.1 Lattice vibrations—phonons
4.2 Electron–phonon and exciton–phonon interactions
4.3 Lattice vibrations associated with point defects
4.4 A localized optical centre in a solid matrix—the configurational coordinate model
4.5 The shape of absorption and emission spectra of a localized centre
4.6 Thermal quenching of luminescence
4.7 Problems
References
5. Channels of radiative recombination in semiconductors
5.1 Overview of luminescence processes in crystalline semiconductors
5.2 Recombination of free electron–hole pairs
5.2.1 Direct bandgap
5.2.2 Indirect bandgap
5.3 Recombination of a free electron with a neutral acceptor (e–A[sup(0)]) and of a free hole with a neutral donor (h–D[sup(0)])
5.4 Recombination of donor–acceptor pairs (D[sup(0)]–A[sup(0)])
5.5 Luminescence excited by two-photon absorption
5.6 Luminescence from transition metal and rare earth ion impurities
5.7 Problems
References
6. Non-radiative recombination
6.1 Transformation of the excitation energy into heat
6.1.1 Multiphonon recombination
6.1.2 Auger and bimolecular recombination
6.2 Creation of lattice defects
6.3 Photochemical changes
6.4 Problems
References
7. Luminescence of excitons
7.1 Concept of the Wannier exciton
7.1.1 Absorption spectrum of the Wannier exciton
7.1.2 Direct bandgap: resonant luminescence of free exciton–polaritons
7.1.3 Direct bandgap: luminescence of free excitons with emission of optical phonons
7.1.4 Luminescence of free excitons in indirect-bandgap semiconductors
7.2 Bound excitons
7.2.1 Excitons bound to shallow impurities
7.2.2 Quantitative luminescence analysis of shallow impurities in silicon
7.2.3 Excitons bound to isoelectronic impurities
7.2.4 Self-trapped excitons
7.3 Problems
References
8. Highly excited semiconductors
8.1 Experimental considerations
8.2 Excitonic molecule or biexciton
8.2.1 Identification of the EM emission line
8.2.2 Determination of biexciton parameters
8.3 Collisions of free excitons
8.4 Electron–hole liquid (EHL)
8.4.1 Luminescence determination of EHL parameters
8.4.2 Identification of the EHL emission band
8.4.3 Coexistence of excitonic molecules with electron–hole liquid
8.5 Electron–hole plasma (EHP)
8.5.1 Mott transition
8.5.2 Luminescence of EHP
8.6 Bose–Einstein condensation of excitons
8.6.1 Properties of the Bose–Einstein distribution
8.6.2 Luminescence experiment: Bose–Einstein condensation yes or no?
8.7 Problems
References
9. Luminescence of disordered semiconductors
9.1 Densities of states in bands
9.2 Temperature dependence of luminescence
9.3 Distribution of luminescence lifetimes
9.4 Spectral shape of the emission band
9.5 Some other properties of luminescence of disordered semiconductors
9.5.1 Correlation effects
9.5.2 Non-radiative recombination
9.5.3 Luminescence of impurities and defects
9.5.4 Luminescence ‘fatigue’
9.6 Problems
References
10. Stimulated emission
10.1 Spontaneous versus stimulated emission. Optical gain
10.2 Optical gain in semiconductors
10.3 Spectral shape of the optical gain
10.4 Stimulated emission in an indirect-bandgap semiconductor
10.5 Participation of excitons in stimulated emission
10.6 Experimental techniques for measuring the optical gain
10.6.1 Variable stripe length (VSL) technique
10.6.2 Pump and probe (P&P) method
10.7 Problems
References
11. Electroluminescence
11.1 Historical notes
11.2 High-field electroluminescence
11.2.1 Experimental considerations
11.2.2 Mechanisms of high-field electroluminescence
11.2.3 Intensity, spectral and temporal characteristics
11.3 Injection electroluminescence
11.3.1 Electrical properties of a p-n junction
11.3.2 Intensity, spectral and temporal characteristics of LEDs
11.4 Electroluminescence of a p-n junction biased in the reverse direction
11.5 Problems
References
12. Electronic structure and luminescence of low-dimensional semiconductors
12.1 Basic types of low-dimensional semiconductors
12.1.1 Semiconductor heterostructures
12.1.2 Basic types of quantum-well heterostructures
12.2 Density of states in low-dimensional semiconductors
12.3 Quantum wells (layers)—two-dimensional semiconductors
12.3.1 Single quantum well with in.nite barriers
12.3.2 Quantum well with finite barriers
12.3.3 Excitons in a quantum well
12.3.4 Optical transitions in a quantum well
12.3.5 Luminescence of quantum wells
12.4 Quantum wires
12.5 Quantum dots—nanocrystals
12.5.1 Quantum dot with spherically symmetric potential
12.5.2 Types of quantum dots according to the strength of the quantum con.nement effect
12.5.3 Luminescence of quantum dots
12.6 Exciton–phonon interaction. Phonon bottleneck
12.7 Some special phenomena
12.8 Problems
References
13. Effects of high excitation in low-dimensional structures
13.1 Excitonic molecule (biexciton) in a quantum well
13.2 Trions in a quantum well
13.3 Collisions of free excitons in a quantum well
13.4 Electron–hole plasma (EHP) and electron–hole liquid (EHL) in 2D structures
13.5 Biexcitons, EHP, and EHL in quantum wires
13.6 Effects of high excitation in quantum dots (nanocrystals)
13.7 Problems
References
14. Stimulated emission and lasing in low-dimensional structures
14.1 Stimulated emission in quantum wells
14.1.1 Localized excitons
14.1.2 Radiative decay of an exciton with emission of an LO-phonon (X–LO)
14.1.3 Stimulated emission in electron–hole plasma (EHP)
14.2 Stimulated emission in quantum wires
14.3 Stimulated emission in nanocrystals
14.3.1 Nanocrystals dispersed in a matrix
14.3.2 Heterostructures with ordered quantum dots
14.4 Random lasing
14.5 Problems
References
15. Silicon nanophotonics
15.1 Silicon nanocrystals
15.2 Optical gain in silicon nanocrystals
15.3 Active planar waveguides made of silicon nanocrystals
15.4 Electroluminescence of silicon nanocrystals
15.5 Silicon nanocrystals combined with Er[sup(3+)] ions
15.6 Biological applications of silicon nanocrystals
15.7 Problems
References
16. Photonic structures
16.1 Photonic crystals
16.1.1 Spontaneous emission
16.1.2 Stimulated emission
16.2 Microresonators
16.3 Microcavities
16.4 Single photon sources
16.5 Problems
References
17. Spectroscopy of single semiconductor nanocrystals
17.1 Basic principles
17.2 Experimental techniques
17.2.1 Wide-field micro-spectroscopy
17.2.2 Scanning techniques
17.3 Preparation of samples
17.3.1 Electron- and ion-beam lithography
17.3.2 Colloidal dispersions
17.4 Experimental observation of luminescence from individual nanocrystals
17.4.1 Hidden fine structure of luminescence spectra
17.4.2 Changes in spectra: jumps, shifts, blinking
17.4.3 Stark effect
17.4.4 Luminescence polarization
17.4.5 Luminescence intermittency—blinking
17.5 Nanocrystals as sources of non-classical photon flux
17.5.1 Measuring photon statistics
17.5.2 Experimental manifestation of non-classical light emitted by a single nanocrystal
17.6 Problems
References
Appendices
A: Convolution
B: Emission spectrum of free excitons including phonon broadening
C: Luminescence of an excitonic molecule
D: Kinetic model of exciton condensation
E: Bose–Einstein condensation
F: Emission band due to strong electron–phonon interaction
G: Fitting the optical gain spectral shape in the model of k-relaxation
H: Reabsorption of luminescence in semiconductors
I: Oscillator strength
J: Fitting with a double exponential (Kočka’s summation)
K: Absolute quantum yield of luminescent materials
L: Basic description of statistics of light from classical and non-classical sources
M: Behaviour of multi-component spectral mixtures: the isostilbic point
Subject index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Material index
A
C
G
H
I
P
Q
R
S
T
Y
Z