Machine Learning and Data Mining for Sports Analytics. 9th International Workshop, MLSA 2022 Grenoble, France, September 19, 2022 Revised Selected Papers

دانلود کتاب Machine Learning and Data Mining for Sports Analytics. 9th International Workshop, MLSA 2022 Grenoble, France, September 19, 2022 Revised Selected Papers

36000 تومان موجود

کتاب یادگیری ماشین و داده کاوی برای تجزیه و تحلیل ورزشی. نهمین کارگاه بین المللی ، MLSA 2022 Grenoble ، فرانسه ، 19 سپتامبر 2022 برگه های منتخب اصلاح شده نسخه زبان اصلی

دانلود کتاب یادگیری ماشین و داده کاوی برای تجزیه و تحلیل ورزشی. نهمین کارگاه بین المللی ، MLSA 2022 Grenoble ، فرانسه ، 19 سپتامبر 2022 برگه های منتخب اصلاح شده بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب Machine Learning and Data Mining for Sports Analytics. 9th International Workshop, MLSA 2022 Grenoble, France, September 19, 2022 Revised Selected Papers

نام کتاب : Machine Learning and Data Mining for Sports Analytics. 9th International Workshop, MLSA 2022 Grenoble, France, September 19, 2022 Revised Selected Papers
عنوان ترجمه شده به فارسی : یادگیری ماشین و داده کاوی برای تجزیه و تحلیل ورزشی. نهمین کارگاه بین المللی ، MLSA 2022 Grenoble ، فرانسه ، 19 سپتامبر 2022 برگه های منتخب اصلاح شده
سری : Communications in Computer and Information Science, 1783
نویسندگان : , , ,
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 135
ISBN (شابک) : 9783031275265 , 9783031275272
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 10 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Organization
Contents
Football
Towards Expected Counter - Using Comprehensible Features to Predict Counterattacks
1 Introduction
2 Framework for Understanding Complex Sequences
3 Definition of Sequences of Interest and Success Criteria
3.1 Rule-based Identification of Persistent Open-Play Turnovers
3.2 Definition of Success Criteria for Counterattacks
3.3 Emerging Dataset
4 Comprehensible Features for Prediction
4.1 Constructing Features from Domain-Specific Assumptions
4.2 Influence of Ball Loss Location for Feature Assessment
4.3 Prediction Capability of the Constructed Features
5 Model-based Test of Features
6 Conclusion
References
Shot Analysis in Different Levels of German Football Using Expected Goals
1 Introduction
2 Related Work
3 Methodology
3.1 Data
3.2 Statistical Analysis
3.3 Expected Goals Models
4 Results
4.1 Statistical Analysis
4.2 Expected Goals Models
5 Conclusions
A Box plots of significantly different distributions
References
Analyzing Passing Sequences for the Prediction of Goal-Scoring Opportunities
1 Introduction
2 Problem Definition
3 Methodology
3.1 Tracking Data
3.2 Event Data
3.3 Data Alignment
3.4 Extraction of Goal Scoring Opportunities
3.5 Pitch Partitioning
3.6 Sequential Pattern Mining
4 Experimental Study
5 Style of Play for the Top-2 Teams
6 Conclusions and Future Work
References
Let\'s Penetrate the Defense: A Machine Learning Model for Prediction and Valuation of Penetrative Passes
1 Introduction
2 Related Work
3 Penetrative Pass Prediction and Valuation
3.1 Dataset and Preprocessing
3.2 Potential Penetrative Pass Situation
3.3 Penetrative Pass Label Generation
3.4 Penetrative Pass Decomposed Model
4 Experiments and Results
4.1 Best Performing Prediction Model
4.2 Does a Penetrative Pass Affect Goal Scoring or Conceding?
4.3 Teams\' Penetrative Performance Analysis
4.4 Field Section Analysis:
5 Conclusion
References
Evaluation of Creating Scoring Opportunities for Teammates in Soccer via Trajectory Prediction*-12pt
1 Introduction
2 Proposed Framework
2.1 Potential Score Model in Modified OBSO
2.2 C-OBSO with Trajectory Prediction
3 Experiments
3.1 Dataset
3.2 Data Processing for Verification
3.3 Our Model Verification
3.4 C-OBSO Results
4 Related Work
5 Conclusion
A Overview of our Method
B Off-Ball Scoring Opportunity ch5Spearman18
C Variational Recurrent Neural Network ch5Chung15
D Graph Variational Recurrent Neural Network ch5Yeh2019
E Validation Results of Trajectory Prediction Model
F C-OBSO and OBSO Results Without the Potential Score Model
G Relationship Between Rating, C-OBSO, and Goal
References
Cost-Efficient and Bias-Robust Sports Player Tracking by Integrating GPS and Video
1 Introduction
2 Related Work
2.1 Optical Player Tracking
2.2 GPS-Based Player Tracking
2.3 GPS-OTS Integration Approach
3 Main Contributions
3.1 Anchor Starter Detection
3.2 Anchor Segment Detection
3.3 GPS-OTS Trajectory Matching per Anchor Segment
3.4 Initial Estimation of GPS Biases
3.5 Fine-Tuning GPS Biases
4 Experiments
4.1 Data Preparation
4.2 Implementation Detail
4.3 Model Evaluation
5 Conclusion and Future Work
References
Racket Sports
Predicting Tennis Serve Directions with Machine Learning
1 Introduction
2 Related Work
3 Basic Information About Tennis Serves
4 Data
5 Feature Engineering
5.1 Outcome of Previous Points
5.2 Fatigue
5.3 Performance Anxiety
5.4 Other Features
6 Machine Learning
7 Discussion
8 Conclusion and Future Work
References
Discovering and Visualizing Tactics in a Table Tennis Game Based on Subgroup Discovery
1 Introduction
2 Methodology
2.1 Dataset
2.2 Tactics in Table Tennis
2.3 Mining Frequent and Discriminant Sequential Pattern
2.4 Summary of Assumptions
3 Results
3.1 Presentation of the Obtained Alternate Sequences
3.2 Visualization of the Tactics
4 Conclusion and Perspectives
A Appendix
References
Cycling
Athlete Monitoring in Professional Road Cycling Using Similarity Search on Time Series Data
1 Introduction
2 Related Work
3 Materials
3.1 Materials
3.2 Data Preprocessing
4 Methodology
4.1 Selection of Potential Matches
4.2 Taylor-made Approach
4.3 Dimensionality Reduction Approach
5 Results
5.1 Modeling Performance
5.2 Athlete Monitoring
6 Discussion
7 Conclusion
References
Author Index




پست ها تصادفی