Machine Learning and the Internet of Things in Solar Power Generation

دانلود کتاب Machine Learning and the Internet of Things in Solar Power Generation

50000 تومان موجود

کتاب یادگیری ماشین و اینترنت اشیا در تولید انرژی خورشیدی نسخه زبان اصلی

دانلود کتاب یادگیری ماشین و اینترنت اشیا در تولید انرژی خورشیدی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب Machine Learning and the Internet of Things in Solar Power Generation

نام کتاب : Machine Learning and the Internet of Things in Solar Power Generation
عنوان ترجمه شده به فارسی : یادگیری ماشین و اینترنت اشیا در تولید انرژی خورشیدی
سری : Smart Engineering Systems: Design and Applications
نویسندگان : , , , ,
ناشر : CRC Press
سال نشر : 2023
تعداد صفحات : 190
ISBN (شابک) : 9781032299785 , 9781003302964
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 61 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface to the first edition
Chapter organization
Editors bios
List of Contributors
Chapter 1: Solar analytics using AWS serverless services
1.1 Introduction
1.1.1 Solar thermal power
1.2 Related work
1.3 Internet of Things (IoT)
1.4 The use of contemporary technologies in system design
1.5 Serverless solar data analytics
1.6 Conclusion
References
Chapter 2: Study of conventional & non-conventional SEPIC converter in solar photovoltaic system using Proteus
2.1 Introduction
2.2 SEPIC converter in the open-loop system
2.3 SEPIC converter in the closed-loop system
2.4 Conclusion
References
Chapter 3: Design and implementation of non-inverting buck converter based on performance analysis scheme
3.1 Introduction
3.2 Non-reversing buck-boost converter
3.2.1 Operating modes of NIBB converter-buck mode
3.2.2 Operating modes of NIBB converter – boost mode
3.2.3 Design equations of NIBB converter [ 15 ]
3.3 Simulation results of NIBB converter
3.4 Computation of output voltage ripple for NIBB converters based on different duty cycle
3.4.1 Values
3.5 Conclusion
References
Chapter 4: Investigation of various solar MPPT techniques in solar panel
4.1 Introduction
4.1.1 PV module
4.2 Problem statement
4.3 Methodology
4.3.1 MPPT algorithms for uniform irradiance
4.3.1.1 Perturb and observe
4.3.1.2 Hill climbing
4.3.1.3 Incremental conductance
4.3.1.4 Load current maximization
4.3.2 MPPT algorithms for partial shading condition
4.3.2.1 Particle Swarm Optimization (PSO)
4.3.2.2 Artificial Neural Network (ANN)
4.4 Simulation and performance comparison
4.4.1 Modeling and simulation of 60W PV array ( Figures 4.14–4.19)
4.4.2 Comparison of MPPT techniques for varying conditions of solar irradiation
4.5 Conclusion
References
Chapter 5: Real-time solar farm performance monitoring using IoT
5.1 Introduction
5.2 Proposed system design
5.3 Hardware design
5.3.1 Electrical characteristics
5.3.2 Thermal characteristics
5.3.3 PV array design
5.3.4 LoRa technology
5.3.5 Communication pattern of LPWAN
5.3.6 Gateway information management technique
5.3.7 Functional requirements
5.3.7.1 Measurement of monitoring parameters
5.3.7.2 Collection of monitoring parameters
5.3.7.3 Modeling measurement system
5.3.7.4 Visualization of measured parameters
5.3.7.5 Wireless monitoring and reporting
5.3.8 Fault detection model
5.3.9 Data analysis GUI application
5.3.10 Software design
5.4 Results and discussion
5.5 Conclusion
5.5.1 Recommendation
5.5.1.1 Measurement
5.5.1.2 Data collection
5.5.1.3 Modeling
5.5.1.4 Data visualization
5.5.1.5 Remote detection and reporting
5.5.1.6 Future work
References
Chapter 6: Solar energy forecasting architecture using deep learning models
6.1 Introduction
6.2 Deep learning approach
6.3 A sample multilayer architecture
6.4 Data mining process for renewable energy
6.5 Solar forecasting architecture
6.5.1 Data collection
6.5.2 Dataset
6.5.3 Data preprocessing and feature selection
6.5.4 Model training and parameterization
6.6 Solar power forecasting prediction techniques
6.6.1 RNN
6.6.2 GRU
6.6.3 LSTM
6.7 Performance results
6.8 Results and discussion
References
Chapter 7: Characterization of CuO–SnO 2 composite nano powder by hydrothermal method for solar cell
7.1 Introduction
7.2 Sample preparation method
7.2.1 Preparation of CuO–SnO 2 thin film
7.2.2 Characterization techniques
7.3 Results and discussion
7.3.1 Structural properties
7.3.2 Scanning Electron Microscope (SEM)
7.3.3 Transmission electron microscopy analysis
7.4 Optical properties
7.5 Diode and solar applications
7.6 Characteristics
7.7 Conclusion
References
Chapter 8: Design and development of solar PV based advanced power converter topologies for EV fast charging
8.1 Introduction to electric vehicle charging
8.2 DC–DC converters
8.2.1 Boost converter
8.2.2 Buck-boost converter
8.3 DC–DC converter for DC fast charging
8.3.1 Snubber assist zero-voltage zero-current (SAZZ) converter for EV applications
8.3.1.1 Modes of operation
8.3.2 Re-lift converter
8.3.3 Bi-directional DC–DC converter
8.3.4 Boost mode or step-up mode of bidirectional DC–DC converter
8.4 Conclusion
References
Chapter 9: Assessment of different MPPT techniques for PV system
9.1 Introduction
9.2 Modeling of PV panel
9.3 MPPT procedures
9.3.1 Incremental conductance technique
9.3.2 Perturb and observe procedure
9.3.3 Altered P&O process
9.4 Results and discussions
9.5 Conclusion
References
Index




پست ها تصادفی