Machine Learning: Concepts, Tools and Data Visualization

دانلود کتاب Machine Learning: Concepts, Tools and Data Visualization

57000 تومان موجود

کتاب یادگیری ماشینی: مفاهیم، ​​ابزارها و تجسم داده ها نسخه زبان اصلی

دانلود کتاب یادگیری ماشینی: مفاهیم، ​​ابزارها و تجسم داده ها بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 9


توضیحاتی در مورد کتاب Machine Learning: Concepts, Tools and Data Visualization

نام کتاب : Machine Learning: Concepts, Tools and Data Visualization
عنوان ترجمه شده به فارسی : یادگیری ماشینی: مفاهیم، ​​ابزارها و تجسم داده ها
سری :
نویسندگان : ,
ناشر : World Scientific Publishing Company
سال نشر : 2021
تعداد صفحات : 0
ISBN (شابک) : 9811228140 , 9789811228148
زبان کتاب : English
فرمت کتاب : rar    درصورت درخواست کاربر به PDF تبدیل می شود
حجم کتاب : 151 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Contents
About the Author
Preface
Book Reviews
Part I Artificial Intelligence
Chapter 1 Summary of Artificial Intelligence
1.1 Definition of Artificial Intelligence
1.2 History of Artificial Intelligence
1.2.1 The Beginning of Artificial Intelligence
1.2.2 Early Artificial Intelligence
1.2.3 The Stagnation of Artificial Intelligence
1.2.4 The Reactivation of Artificial Intelligence (1969–1990)
1.2.5 The Augustan Era (Platinum Age) of Artificial Intelligence (1980–present)
1.3 Classification of Artificial Intelligence
1.3.1 Strong Artificial Intelligence
1.3.2 Weak Artificial Intelligence
1.4 Practice Questions
Chapter 2 Machine Learning
2.1 Definition of Machine Learning
2.1.1 Machine Learning and Data Mining
2.2 Classification of Machine Learning
2.3 Supervised Learning
2.3.1 Classification
2.3.2 Regression
2.3.3 Reinforcement Learning
2.4 Unsupervised Learning
2.5 The Difference Between How Machine Learning and Statistics Work
2.6 Considerations for Performing Machine Learning
2.7 Resources for Machine Learning
2.7.1 Kaggle
2.7.2 Public Data Portal
2.8 Practice Questions
Chapter 3 Deep Learning
3.1 Definition and Concepts of Deep Learning
3.1.1 Perceptron
3.1.2 Multilayer Perceptron
3.2 Types of Artificial Neural Network
3.2.1 DNN
3.2.2 CNN
3.2.3 RNN
3.3 Practice Questions
Chapter 4 Case Study
4.1 AlphaGo
4.1.1 System Configuration
4.1.2 Algorithm Implementation
4.2 IBM Watson
4.3 Practice Questions
Chapter 5 Microsoft Azure Machine Learning Studio
5.1 Introduction of Microsoft Azure Machine Learning Studio
5.2 Microsoft Azure Machine Learning Studio Sign-up
5.3 Introduction of Microsoft Azure Machine Learning Studio Function
5.4 Practice Questions
Chapter 6 Create Prediction Model using Microsoft Azure Machine Learning Studio
6.1 Microsoft Azure Machine Learning Studio Experiment Configuration and Functions
6.2 Microsoft Azure Machine Learning Studio Experiment Tutorial
6.3 Practice Making Microsoft Azure Machine Learning Studio Experiment Prediction Models
6.3.1 Importing Data to Azure Cloud
6.3.2 Visualize Data Set
6.3.3 Data Preprocessing
6.3.4 Feature Definition
6.3.5 Machine Learning Algorithm Selection and Implementation
6.3.6 Predicting with New Data
6.4 Practice Questions
Chapter 7 Create Prediction Models using Microsoft Azure Machine Learning Studio Web Service Deployment
7.1 Create Prediction Models using Microsoft Azure Machine Learning Studio Web Service Deployment Tutorial
7.2 Web Service Model in the R and Python languages
7.2.1 Integrating the Web Service with the R Language
7.2.2 Integrating the Web Service with Python
7.3 Practice Questions
Chapter 8 Creating a Prediction Model using Microsoft Azure Machine Learning Studio Script Integration
8.1 R Script Integration
8.1.1 Viewing Data using R Script
8.1.2 Implement Decision Tree using R Script
8.2 Python Script Integration
8.2.1 Implement K-Means using Python Script
8.3 Practice Questions
Part II Exercises
Chapter 9 Exercises
9.1 Predicting Car Price Using Regression
9.2 Classify News Article Category
9.3 Exploring Credit Risk Groups Using Anomaly Detection
9.4 Predicting the Number of People Getting on and Off at Gangnam Station in the Morning Rush Hours
9.5 Heart Disease Prediction
9.6 Find Similar Companies Using K-Means Clustering
9.7 Practice Questions
Part III Visualization
Chapter 10 Visualization
10.1 Definition of Visualization
10.2 Purpose and Function of Data Visualization
10.2.1 Purpose of Data Visualization
10.2.2 Function of Data Visualization
10.3 Practice Questions
Chapter 11 Visualization with Power BI
11.1 Introduction of Power BI
11.2 Download and log in to Power BI Desktop
11.3 Configure Power BI Desktop Screen
11.4 Data Import
11.4.1 Import Open Data from Data World
11.4.2 Importing Excel File Data
11.5 Introduction of Power BI Visualization Graph
11.5.1 How to use Visualizations in Power BI
11.5.2 Types of Visualization Chart
11.6 Using Learning Results with Azure Machine Learning Studio
11.6.1 Excel File
11.7 Practice Questions
Chapter 12 Visualization with R in Power BI
12.1 Introduction of R
12.2 How to use the R Script Editor
12.3 Visualization for Data Analysis Using Power BI R Script
12.3.1 Numerical Univariate Plot
12.3.2 Categorical Univariate Plot
12.3.3 Numerical Bivariate Plot
12.3.4 Categorical Bivariate Plot
12.4 Practice Questions
Bibliography




پست ها تصادفی