Machine Translation 16th China Conference, CCMT 2020, Hohhot, China, October 10-12, 2020, Revised Selected Papers

دانلود کتاب Machine Translation 16th China Conference, CCMT 2020, Hohhot, China, October 10-12, 2020, Revised Selected Papers

38000 تومان موجود

کتاب ترجمه ماشینی شانزدهمین کنفرانس چین، CCMT 2020، هوهات، چین، 10 تا 12 اکتبر 2020، مقالات منتخب اصلاح شده نسخه زبان اصلی

دانلود کتاب ترجمه ماشینی شانزدهمین کنفرانس چین، CCMT 2020، هوهات، چین، 10 تا 12 اکتبر 2020، مقالات منتخب اصلاح شده بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب Machine Translation 16th China Conference, CCMT 2020, Hohhot, China, October 10-12, 2020, Revised Selected Papers

نام کتاب : Machine Translation 16th China Conference, CCMT 2020, Hohhot, China, October 10-12, 2020, Revised Selected Papers
ویرایش : 1st ed. 2020.
عنوان ترجمه شده به فارسی : ترجمه ماشینی شانزدهمین کنفرانس چین، CCMT 2020، هوهات، چین، 10 تا 12 اکتبر 2020، مقالات منتخب اصلاح شده
سری :
نویسندگان : ,
ناشر :
سال نشر : 2021
تعداد صفحات : 154
ISBN (شابک) : 9789813361614 , 981336162X
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface\nOrganization\nContents\nTransfer Learning for Chinese-Lao Neural Machine Translation with Linguistic Similarity\n Abstract\n 1 Introduction\n 2 Linguistic Similarity Between Thai and Lao\n 3 Our Approach\n 3.1 Chinese-Thai NMT Model\n 3.2 Thai-Lao NMT Model\n 3.3 Chinese-Lao NMT Model\n 4 Evaluation\n 4.1 Experimental Setup\n 4.2 Experimental Results\n 5 Related Work\n 6 Conclusions\n Acknowledgements\n References\nMTNER: A Corpus for Mongolian Tourism Named Entity Recognition\n Abstract\n 1 Introduction\n 2 Related Work\n 3 Challenge for Mongolian Tourism NER\n 4 Annotated Mongolian Tourism Corpus\n 4.1 Data Collection\n 4.2 Annotation Schema\n 4.3 Annotation Agreement\n 5 Mongolian Tourism NER Model\n 6 Experiment\n 6.1 Data\n 6.2 Baselines\n 6.3 Results\n 6.4 Analysis\n 7 Conclusion\n Acknowledgement\n References\nUnsupervised Machine Translation Quality Estimation in Black-Box Setting\n Abstract\n 1 Introduction\n 2 Background\n 2.1 Machine Translation Evaluation\n 2.2 Machine Translation Quality Estimation\n 3 Model Description\n 3.1 Pretrained Models for Quality Estimation\n 3.2 MTE-Based QE Data\n 4 Experiment\n 4.1 Setup\n 4.2 Experiment Results\n 5 Analysis\n 5.1 Is BERT Always the Best?\n 5.2 Is Black-Box Model Necessary?\n 5.3 Where Is the Limitation of QE?\n 6 Conclusion\n Acknowledgement\n References\nYuQ: A Chinese-Uyghur Medical-Domain Neural Machine Translation Dataset Towards Knowledge-Driven\n 1 Introduction\n 2 Related Work\n 3 Datasets\n 3.1 Data Collection\n 3.2 Corpus Preprocessing\n 3.3 Annotation\n 3.4 Knowledge Graph Construction\n 4 Corpus Analysis\n 4.1 Lexical Feature Analysis\n 4.2 Contrastive Analysis of Lexical Features\n 5 Experiments\n 5.1 Models\n 5.2 Setup\n 5.3 Automatic Evaluation\n 5.4 Manual Evaluation\n 5.5 Metrics\n 5.6 Annotation Statistics\n 5.7 Results\n 5.8 Case Study\n 5.9 Ablation Study\n 6 Conclusion and Future Work\n References\nQuality Estimation for Machine Translation with Multi-granularity Interaction\n 1 Introduction\n 2 Related Work\n 3 Methodology\n 3.1 Model Architecture\n 3.2 Multi-granularity Interaction\n 3.3 Model Training\n 4 Experiments\n 4.1 Dataset\n 4.2 Experimental Setup\n 4.3 Experimental Result\n 4.4 Word-Level Feature Analysis\n 5 Conclusion\n References\nTransformer-Based Unified Neural Network for Quality Estimation and Transformer-Based Re-decoding Model for Machine Translation\n 1 Introduction\n 2 Model\n 2.1 Transformer-Based Unified Neural Network for the Quality Estimation of Machine Translation\n 2.2 Study of Re-decoding-Based Neural Machine Translation\n 3 Experiment\n 3.1 Setting\n 3.2 Results\n 3.3 Analysis\n 4 Conclusions\n References\nNJUNLP\'s Machine Translation System for CCMT-2020 Uighur Chinese Translation Task\n 1 Introduction\n 2 Machine Translation System\n 2.1 Pre-processing\n 2.2 Architecture\n 2.3 Back-Translation of Monolingual Data\n 2.4 Fine-Tuning\n 2.5 Ensemble Translation\n 2.6 Reranking\n 3 Results\n 4 Conclusion\n References\nDescription and Findings of OPPO\'s Machine Translation Systems for CCMT 2020\n 1 Introduction\n 2 Applying Multiple Word Segmentation Tools\n 3 English Chinese Machine Translation Task\n 3.1 Data Preprocessing\n 3.2 Model Training\n 3.3 Corpus Filtering Task\n 4 Japanese English Translation Task (Patent Domain)\n 4.1 Data Preprocessing\n 4.2 Model Training\n 5 Minority Languages Mandarin Translation Task\n 5.1 Data Preprocessing\n 5.2 Model Training\n 6 Conclusion and Future Work\n References\nTsinghua University Neural Machine Translation Systems for CCMT 2020\n 1 Introduction\n 2 Methods\n 2.1 Data\n 2.2 Models\n 2.3 Data Augmentation\n 2.4 Finetuning\n 2.5 Ensemble\n 3 Experiments\n 3.1 Settings\n 3.2 Results on Chinese-English Translation\n 3.3 Results on English-Chinese Translation\n 4 Conclusion\n References\nBJTU’s Submission to CCMT 2020 Quality Estimation Task\n Abstract\n 1 Introduction\n 2 Model Description\n 2.1 Pretrained Models for Quality Estimation\n 2.2 Further Pretraining for Bilingual Input\n 2.3 Multi-task Learning for Multi-granularities\n 2.4 Weighted Loss for Unbalanced Word Labels\n 2.5 Multi-model Ensemble\n 3 Experiment\n 3.1 Dataset\n 3.2 Experiment Results\n 3.3 Ablation Study\n 4 Conclusion\n Acknowledgement\n References\nNJUNLP\'s Submission for CCMT20 Quality Estimation Task\n 1 Introduction\n 2 Methods\n 2.1 Existing Methods\n 2.2 Proposed Methods\n 3 Experiments\n 3.1 Dataset\n 3.2 Settings\n 3.3 Single Model Results\n 3.4 Ensemble\n 4 Analysis\n 5 Conclusion\n References\nTencent Submissions for the CCMT 2020 Quality Estimation Task\n 1 Introduction\n 2 Architecture\n 2.1 Predictors\n 2.2 Estimators\n 2.3 Ensemble\n 3 Experiments and Results\n 3.1 Dataset\n 3.2 Experiments\n 4 Conclusion\n References\nNeural Machine Translation Based on Back-Translation for Multilingual Translation Evaluation Task\n Abstract\n 1 Introduction\n 2 Related Work\n 3 Model\n 3.1 Transformer-Base\n 3.2 Transformer-Big\n 3.3 Dynamic-Conv\n 4 Experiments\n 4.1 Preprocessing\n 4.2 Back Translation Based Synthetic Data\n 4.3 Multi-model Ensemble\n 4.4 Contrast Experiments\n 4.5 Results\n 4.6 Model Analysis and Discussion\n 5 Conclusion and Future Work\n Acknowledgement\n References\nAuthor Index




پست ها تصادفی