توضیحاتی در مورد کتاب Magnesium Batteries: Research and Applications
نام کتاب : Magnesium Batteries: Research and Applications
ویرایش : 1
عنوان ترجمه شده به فارسی : باتری های منیزیمی: تحقیقات و کاربردها
سری : Energy and Environment Series
نویسندگان : Maximilian Fichtner
ناشر : Royal Society of Chemistry
سال نشر : 2019
تعداد صفحات : 352
ISBN (شابک) : 1788014340 , 9781788014342
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 37 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Magnesium Batteries: Research and Applications
Preface
Contents
Chapter 1 - Motivation for a Magnesium Battery
1.1 Introduction
1.2 Overview on Research Topics
1.2.1 Electrolytes
1.2.2 Cathodes
1.2.3 Anodes
1.2.4 Mg Deposition and the Lack of Dendrite Formation
1.3 Need for Better Batteries
1.4 Need for Sustainable Solutions
1.4.1 Cathode
1.4.2 Anode
1.4.3 Electrolyte
1.5 Magnesium as a Resource
1.6 Conclusion
Acknowledgement
References
Chapter 2 - Non-aqueous
Electrolytes for
Mg Batteries
2.1 Introduction
2.2 Halide-ion
Containing Electrolytes
2.2.1 Carbon-based
Anions
2.2.2 Nitrogen-based
Anions
2.2.3 Oxygen-based
Anions
2.2.4 Halides as Anions
2.2.5 Weakly Coordinating Anions
2.3 Chloride-free
Magnesium Electrolytes
2.3.1 Halogen-free
Simple Salts
2.3.2 Halogen-based
Simple Salts
2.3.3 Halogen-based
Reagents
2.3.4 Electrolytes Based on Non-ethereal
Solvents
2.3.5 Solid State Electrolytes
Acknowledgement
References
Chapter 3 - Solid-state
Magnesium-ion
Conductors
3.1 Introduction
3.2 Phosphate-based
Solid-state
Magnesium-ion
Conductors
3.2.1 Cation and Anion Substitution in MZP
3.2.2 Other Oxygen Containing Solid-state
Magnesium-ion
Conductors
3.3 Chalcogenide-based
Solid-state
Magnesium-ion
Conductors
3.4 Solid-state
Magnesium-ion
Conductors Based on
Complex Metal Hydrides
3.5 Solid-state
Magnesium-ion
Conductors Based on
Metal–Organic Frameworks
3.6 Conclusion
References
Chapter 4 - Theoretical Modelling of Multivalent Ions in Inorganic Hosts
4.1 Introduction
4.1.1 Thermodynamics of Multivalent Electrodes
4.1.1.1 Ground State Hull, Metastability and Average Voltages
4.1.1.2 Capturing Entropy Contributions and the Method of Cluster Expansion
4.1.1.3 Conversion vs. Intercalation
4.1.1.4 Solvent Co-intercalation
4.1.1.5 Stability Windows
4.1.2 Kinetics of Ionic Diffusion in Materials
4.1.2.1 Fick\'s First Law and the Green–Kubo Model for Diffusion
4.1.2.2 Diffusion Coefficients and Activation Barriers
4.1.2.3 Estimating Migration Barriers
4.1.2.4 Percolation Theory
4.1.3 Density Functional Theory as a Tool to Assess Thermodynamic and Kinetic Properties
4.1.3.1 GGA+U and Hybrid Functionals
4.1.4 Application of First-principles
Methods to Multivalent
Ion Intercalation Hosts
4.1.4.1 High-throughput
Screening to Identify a Promising
Intercalation Motif
4.1.4.2 Voltage Curves as a Function of Temperature, the Case of TiS2, CrO2 and V2O5
4.1.4.3 Conversion vs. Intercalation During Mg Reduction
4.1.4.4 Co-intercalation
in Xerogel-V2O5
4.1.4.5 Electrochemical Stability Windows of Coating Materials
4.1.4.6 Assessing Mg Migration in a Spinel Structure
4.1.4.7 Probing Long-range
Mg Transport with Percolation
Theory
4.2 Conclusions
Acknowledgement
References
Chapter 5 - Anode Materials for Rechargeable Mg Batteries
5.1 Introduction
5.2 Insertion-type
Anodes
5.2.1 Graphite
5.2.2 Phospherenes
5.2.3 Borophenes
5.2.4 Transition Metal Carbides
5.2.5 Li4Ti5O12
5.2.6 Na2Ti3O7
5.2.7 Li3VO4
5.2.8 FeVO4
5.3 Alloying-type
Negative Electrode Materials
5.3.1 Electrochemical Behavior of Single Metal Alloy Electrodes
5.3.2 Electrochemical Behavior of Bimetallic Alloy Electrodes
5.3.3 Interest in the Direct Use of MgxM Alloys
5.4 Conclusions and Perspective
References
Chapter 6 - Mg Stripping and Plating at Magnesium Metal and Intermetallic Anodes
6.1 Introduction
6.2 Overview of the Electrolyte Solutions
6.3 Deposition Mechanism
6.4 Surface Morphologies of Electrodeposited Magnesium Metal
6.5 Passivation Layer and Possible SEI Layer
6.6 Intermetallic Anodes
6.7 Summary
References
Chapter 7 - Insertion Electrodes for Magnesium Batteries: Intercalation and Conversion
7.1 Introduction
7.2 Materials for Intercalation
7.2.1 Layered Sulfides and Selenides
7.2.2 Layered Oxides
7.2.2.1 Vanadium Oxide (V2O5)
7.2.2.2 Molybdenum Oxide (MoO3)
7.2.3 Graphite
7.2.4 VOPO4
7.2.5 VS4
7.2.6 Prussian Blue Analogues
7.3 Materials Based on Conversion and Displacement Reactions
7.3.1 Advantages of Conversion/Displacement Reactions for Mg2+ Storage
7.3.2 Copper Chalcogenides
7.4 Conclusion
Acknowledgement
References
Chapter 8 - High Energy Density Insertion Cathode Materials
8.1 Introduction
8.2 Techno-economic
Modelling
8.2.1 Adapting Li-ion
Models
8.2.2 Establish the Materials Requirements for Transformative Batteries
8.2.3 Predicting and Comparing Technology Performances
8.3 High Energy Density Materials for Magnesium Insertion Cathodes
8.3.1 Oxo–Spinel Structures
8.4 Conclusion
Acknowledgement
References
Chapter 9 - Organic Compounds as Electrodes for Rechargeable Mg Batteries
9.1 Introduction
References
Chapter 10 - Magnesium–Sulfur Batteries
10.1 Introduction
10.2 Features of a Mg–S Battery
10.3 Electrolytes for Mg–S Batteries
10.3.1 Complex Electrolytes
10.3.1.1 HMDS-based
Electrolytes
10.3.1.2 MgCl2 Combination-based
Electrolytes
10.3.1.3 Borate Derivative-based
Electrolytes
10.3.2 Mg-ion
Conductive Salt-based
Electrolytes
10.4 Sulfur Cathodes and Cell Configuration
10.5 Summary and Outlook
Acknowledgements
References
Chapter 11 - Mg–Li Dual-cation
Batteries
11.1 Introduction
11.2 Mg–Li Dual-ion
Batteries: Daniell-type
11.2.1 Battery Reactions
11.2.2 Example of a Practical System
11.2.3 Toward High Energy Density Dual-ion
Batteries
11.3 Mg–Li Dual-ion
Batteries: Rocking-chair
Type
11.3.1 Ideal Charge and Discharge Processes
11.3.2 Prototype Battery System
11.3.3 Anode Properties of a Mg–Li Alloy
11.3.3.1 Thermodynamic Analysis for the Alloy Anode
11.3.3.2 Cyclic Voltammetry Experiments in Three-electrode
Beaker Cells
11.3.3.3 Co-electrodeposition
Morphology
11.3.4 Cathode Properties
11.3.4.1 Cyclic Voltammetry Experiments in Different Types of Electrolytes
11.3.4.2 Concomitant Intercalation of Mg–Li Dual Ions
11.3.5 Charge Tests Using Coin Cells
11.4 Facilitating Mechanism of Mg Diffusion
11.4.1 Structure and Diffusion Path in the Mo6S8 Host
11.4.2 Single Ion Migration in a Dilute Mo6S8 Host
11.4.3 Mg Migration in Mg–Li Dual-ion
Systems
11.4.4 Concerted Motion in Single-ion
Systems
11.4.5 Facilitating Intercalation in Mg–Li Dual-ion
Systems
11.4.6 Versatility of the Facilitating Mechanism
11.4.6.1 Concomitant Intercalation in Oxide Hosts
11.4.6.2 Facilitating Diffusion in Spinel Oxide at Room Temperature
11.5 Conclusions and Remarks
Acknowledgements
References
Chapter 12 - Aqueous Mg Batteries
12.1 Introduction
12.2 Types of Aqueous Mg Batteries
12.2.1 Mg–MnO2 Dry Cell
12.2.2 Mg–Seawater Battery
12.2.3 Mg–H2O2 Semi-fuel
Cell
12.2.4 Mg–Air Battery (Aqueous Type)
12.2.5 Other Types
12.3 Current Issues of Aqueous Mg Batteries
12.4 Performance Improvement of Aqueous Mg Batteries
12.4.1 Development of Mg Anodes
12.4.1.1 Improvement of Pure Magnesium
12.4.1.2 Addition of Alloying Elements
12.4.1.3 Microstructure Tuning
12.4.2 Electrolyte Modification
12.5 Outlook
Acknowledgement
References
Chapter 13 - Life Cycle Analysis of a Magnesium–Sulfur Battery
13.1 Introduction
13.1.1 Status of the MRB
13.2 LCA Method
13.2.1 Goal and Scope
13.2.2 System and System Boundaries
13.2.3 Data Sources and Assumptions
13.2.4 Battery Cell Layout
13.2.4.1 Prototype Pouch Cell
13.2.5 Data for Mg–S Battery Production and Assembly
13.2.5.1 Life Cycle Inventory
13.2.6 Results of the Environmental Impacts Associated with a Mg–S Battery
13.2.6.1 Abiotic Depletion Potential
13.2.6.2 Global Warming Potential
13.2.6.3 Acidification Potential
13.2.6.4 Eutrophication Potential
13.2.6.5 Eco Toxicity Potentials
13.2.6.6 Human Toxicity Potential
13.2.6.7 Stratospheric Ozone Depletion Potential
13.2.6.8 Photochemical Ozone Creation Potential
13.2.7 Sensitivity Analysis
13.2.7.1 Influence of the Mg–S Battery Energy Density
13.2.7.2 Influence of the Electricity Mix Considered for Mg–S Cell and Battery Manufacture
13.2.7.3 Influence of the Packaging Material of the Pouch Cell
13.2.7.4 Comparison with LIBs
13.3 Conclusions
References
Subject Index