توضیحاتی در مورد کتاب Magnetorheological Materials and their Applications
نام کتاب : Magnetorheological Materials and their Applications
عنوان ترجمه شده به فارسی : مواد مغناطیسی و کاربردهای آنها
سری : IET Materials Circuits and Devices Series, 58
نویسندگان : Seung-Bok Choi, Weihua Li
ناشر : The Institution of Engineering and Technology
سال نشر : 2019
تعداد صفحات : 444
ISBN (شابک) : 1785617702 , 9781785617706
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 60 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Contents
Preface
1 Redispersibility and its relevance in the formulation of magnetorheological fluids
1.1 Introduction
1.1.1 Methodology of the redispersibility test
1.2 Results and discussion
1.2.1 Effect of sedimentation time
1.2.2 Effect of additives in MRF formulation
1.2.3 Effect of centrifuging the MRF
1.2.4 Long-time settling (1-year) redispersibility
1.2.5 Redispersibility of MRF with 48 vol.%
1.3 Conclusions
Acknowledgments
References
2 DEM and FEM simulations in magnetorheology: aggregation kinetics and yield stress
2.1 Background
2.1.1 Discrete element method
2.1.2 Finite element method
2.1.3 More complex approaches
2.2 Methodology: numerical methods
2.2.1 Discrete element method
2.2.2 Finite element method
2.3 Results and discussion
2.3.1 Discrete element method
2.3.2 Finite element method
2.4 Conclusions
Acknowledgments
References
3 A new novel of composite adaptive optimal control for MR damper system subjected to mixed disturbances
3.1 Introduction
3.2 New novel of optimal control for nonlinear system
3.2.1 Proposed control law
3.2.2 Simulation of the proposed optimal control and discussion
3.3 Design of a new composite controller
3.3.1 Fuzzy model
3.3.2 Adaptive optimal control
3.4 Application to vibration control
3.4.1 Vehicle seat suspension system
3.4.2 Simulation results and discussions
3.5 Conclusion
Acknowledgment
Appendix A
References
4 Developments in modeling of magnetorheological actuators
4.1 Introduction
4.2 Modeling
4.2.1 Electromagnetic domain
4.2.1.1 Steady-state lumped parameter modeling
4.2.1.2 Magnetostatic field modeling
4.2.1.3 Transient lumped parameter modeling
4.2.1.4 Transient magnetic field modeling
4.2.2 Flow domain
4.2.2.1 Steady-state flow modeling: lumped parameter approach
4.2.2.2 Steady-state CFDs
4.2.2.3 Unsteady fluid dynamics
4.3 Summary
References
5 Use of magnetorheological shock absorber for impact loading mitigation with individually controllable coils
5.1 Introduction
5.2 Gun-recoil system
5.3 Design of multi-coil MR absorber
5.4 Time response of MR buffer system under impact loading
5.4.1 Impact test platform system
5.4.2 Current controller
5.4.3 Time delay compensation
5.4.3.1 Response analysis of electromagnetic drive circuit
5.4.3.2 Response analysis of MR impact system
5.4.3.3 Time delay compensation methods
5.4.3.4 DSP PID controller
5.5 Dynamic characteristics of MR buffer system
5.5.1 Conventional unified control mode
5.5.2 Separate control mode
5.5.3 Timing control mode
5.6 MR shock buffer device control strategy and experimental verification
5.6.1 Methods of MR damper control
5.6.2 MR shock buffer control system
5.6.3 Fuzzy logic control strategy
5.6.3.1 One-dimensional fuzzy control strategy
5.6.3.2 Two-dimensional delay fuzzy control strategy
5.6.4 Fuzzy control experiment
5.6.5 Experimental results and analysis of fuzzy control
5.7 Summary
Acknowledgments
References
6 Influence of magnetorheological stabilizer bar on vehicle roll stability
6.1 Introduction
6.2 MR semi-active stabilizer bar system
6.2.1 Vehicle roll dynamic model
6.2.2 MR stabilizer bar
6.2.2.1 Mathematical model
6.2.2.2 Force analysis of the MR stabilizer bar
6.2.3 The MR damper
6.2.3.1 MR fluids properties
6.2.3.2 Structural principle
6.2.3.3 Controllable torque
6.2.3.4 Electromagnetic simulation
6.2.3.5 Output characteristics
6.2.4 Control strategy for MR stabilizer bar
6.3 ADAMS/Car modeling and simulation
6.3.1 Comparison between ADAMS/Car model and mathematical model
6.3.2 Full-vehicle simulation
6.3.2.1 Fish hook maneuver
6.3.2.2 Single lane change maneuver
6.3.2.3 Pylon course maneuver
6.4 Conclusion
References
7 Hybrid active and semi-active seat suspension
7.1 Hybrid active and semi-active seat suspension design and prototype
7.1.1 Motivation
7.1.2 Prototype
7.2 The seat suspension prototype test and model identification
7.2.1 Testing method
7.2.2 Test results
7.2.3 Model identification
7.3 Control algorithm
7.3.1 Hybrid seat suspension model
7.3.2 Controller design
7.4 Evaluation
7.4.1 Numerical simulation
7.4.2 Experimental setup
7.4.3 Experimental results
7.5 Conclusion
References
8 Development of magnetorheological brake with magnetic coils placed on side housings
8.1 Introduction
8.2 Configuration of the side-coil MR brake
8.3 Modeling of the side-coil MR brake
8.4 Optimization of the side-coil MR brake with rectangular housing profile
8.5 Optimization of the side-coil MR brake with polygonal housing profile
8.6 Summary
References
9 Enhanced magnetic-sensing characteristics for application of magnetorheological elastomer
9.1 Overview of magnetorheological elastomer
9.2 Material preparation of magnetorheological elastomer
9.2.1 Matrix
9.2.2 Magnetic particles
9.2.3 Additives
9.3 Test characterization of magnetorheological elastomers
9.3.1 Mechanism of magnetorheological elastomers
9.3.2 Application research of magnetorheological elastomer
9.4 Conclusions and prospect
References
10 Multi-scale modeling on tensile modulus of magnetorheological elastomers
10.1 Tensile modulus in the absence of magnetic fields
10.1.1 Three parameters of RVE model
10.1.2 Theoretical solutions
10.1.3 FEM solutions
10.1.4 Results
10.2 Tensile modulus under applied magnetic fields
10.2.1 Magnetic-induced stress
10.2.2 The x, y direction tensile modulus under magnetic field
10.2.3 The z direction tensile modulus under magnetic fields
10.3 Anisotropy of the structured MRE
10.3.1 Tensile modulus in different direction
10.3.2 Tensile modulus in the different anisotropy microstructure
10.4 Conclusions
References
11 Experimental study and mathematical model on different magnetorheological elastomers
11.1 MR elastomers fabrication
11.1.1 Selection of materials
11.1.2 Procedure of MRE specimens\' fabrication
11.2 Performance tests of MREs
11.2.1 Test setup and procedure
11.2.2 Results and analysis
11.2.2.1 Physical property test
11.2.2.2 Quasi-static property test
11.2.2.3 Dynamic mechanical property test
11.3 Numerical simulations
11.3.1 The microphysical model based on chi-squared distribution
11.3.2 Magnetoviscoelasticity parametric model
11.3.3 Parameter identification
11.3.4 Numerical simulation results
11.4 Conclusion
Acknowledgments
References
12 Promising application of magnetorheological elastomer
12.1 Semi-active system
12.1.1 Generic tunable vibration absorber
12.1.2 Automotive application
12.1.3 Medical application
12.1.4 Robotic application
12.1.5 Machining application
12.2 Active system
12.2.1 Releasable attachment
12.2.2 Artificial muscle
12.2.3 Microfluidic and peristaltic pumping
12.2.4 Valve system
12.3 Sensory system
12.3.1 Impedance and magnetoresistance
12.3.2 Magneto-induced capacitor
12.3.3 Displacement sensor
12.3.4 Tire pressure sensor
12.3.5 Magnetic field sensor
12.3.6 Tactile sensor
References
13 Development of a hybrid nonlinear vibration absorber working with MR elastomers
13.1 Structure, working principle, and analyses of the MRE absorber
13.1.1 Structure
13.1.2 Working principle
13.1.3 Analysis of the MRE absorber
13.2 Experiment test of the hybrid MRE absorber
13.2.1 Experiment setup
13.2.2 Testing result
13.2.2.1 Nonlinearity verification
13.2.2.2 Adaptability verification
13.3 Vibration reduction evaluation
13.3.1 Performance of the MRE absorber under different amplitudes
13.3.2 The performance comparison between passive absorber and controlled absorber
13.4 Conclusion
References
14 Development of smart base isolation system for civil structures utilising magnetorheological elastomer
14.1 Introduction
14.2 Smart base isolation concept
14.3 Adaptive base isolator
14.3.1 Structure
14.3.2 Finite element analysis
14.3.3 Characterisation testing
14.4 Nonlinear hysteresis modelling
14.4.1 Parametric models
14.4.2 Non-parametric model
14.5 Control algorithms
14.5.1 LQR control with GRNN inverse model
14.5.2 GA optimised fuzzy-logic control
14.6 Experimental setup
14.6.1 Three-storey building
14.6.2 Isolation system assembly
14.6.3 Data acquisition and control system
14.6.4 Earthquake excitation
14.7 Results and discussions
14.7.1 Time history
14.7.2 Peek floor acceleration
14.7.3 Control force and applied current
Acknowledgements
References
15 The designation and mechanical properties of magnetorheological plastomer
15.1 Introduction
15.2 Fabrication methods of MRPs
15.2.1 Hydrogel-like MRP
15.2.2 Polyurethane MRP
15.2.3 Shear-thickening MRP
15.2.4 Thermosensitive MRP
15.3 Mechanical properties
15.3.1 MR effect of MRP
15.3.2 Dynamic mechanical properties of MRP
15.3.3 Magnetic–electric coupling properties of MRP
15.4 Mechanism
15.5 Application
15.6 Conclusion
References
Index