Making AI Intelligible: Philosophical Foundations

دانلود کتاب Making AI Intelligible: Philosophical Foundations

59000 تومان موجود

کتاب قابل فهم کردن هوش مصنوعی: مبانی فلسفی نسخه زبان اصلی

دانلود کتاب قابل فهم کردن هوش مصنوعی: مبانی فلسفی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 11


توضیحاتی در مورد کتاب Making AI Intelligible: Philosophical Foundations

نام کتاب : Making AI Intelligible: Philosophical Foundations
عنوان ترجمه شده به فارسی : قابل فهم کردن هوش مصنوعی: مبانی فلسفی
سری :
نویسندگان : ,
ناشر : Oxford University Press
سال نشر : 2021
تعداد صفحات : 184
ISBN (شابک) : 2020951691 , 9780192894724
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 847 کیلوبایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Making AI Intelligible Philosophical Foundations: Philosophical Foundations
Copyright
Contents
Part I: Introudction and Overview
Chapter 2: Alfred (the Dismissive Sceptic): Philosophers, Go Away!
A Dialogue with Alfred (the Dismissive Sceptic)
Part II: A Proposal for how to Attribute Content to AI
Chapter 3: Terminology: Aboutness, Representation, and
Metasemantics
Loose Talk, Hyperbole, or ‘Derived Intentionality’?
Aboutness and Representation
AI, Metasemantics, and the Philosophy of Mind
Chapter 4: Our Theory: De-Anthropocentrized
Externalism
First Claim: Content for AI Systems Should Be Explained Externalistically
Second Claim: Existing Externalist Accounts of Content Are Anthropocentric
Third Claim: We Need Meta-Metasemantic Guidance
A Meta-Metasemantic Suggestion: Interpreter-centric Knowledge-Maximization
Chapter 5: Application: The Predicate ‘High Risk’
The Background Theory: Kripke-Style
Externalism
Starting Thought: SmartCredit Expresses High Risk Contents Because of its Causal History
Anthropocentric Abstraction of ‘Anchoring’
Schematic AI-Suitable Kripke-Style Metasemantics
Complications and Choice Points
Taking Stock
Appendix to Chapter 5: More on Reference Preservation in ML Systems
Chapter 6: Application: Names and the Mental Files Framework
Does SmartCredit Use Names?
The Mental Files Framework to the Rescue?
Epistemically Rewarding Relations for Neural Networks?
Case Studies, Complications, and Reference Shifts
Taking Stock
Chapter 7: Application: Predication and Commitment
Predication: Brief Introduction to the Act Theoretic View
Turning to AI and Disentangling Three Different Questions
The Metasemantics of Predication: A Teleofunctionalist Hypothesis
Some Background: Teleosemantics and Teleofunctional Role
Predication in AI
AI Predication and Kinds of Teleology
Why Teleofunctionalism and Not Kripke or Evans?
Teleofunctional Role and Commitment (or Assertion)
Theories of Assertion and Commitment for Humans and AI
Part III: Conclusion
Chapter 8: Four Concluding Thoughts
Dynamic Goals
A Story of Neural Networks Taking Over in Ways We Cannot Understand
Why This Story is Disturbing and Relevant
Taking Stock and General Lessons
The Extended Mind and AI Concept Possession
Background: The Extended Mind and Active Externalism
The Extended Mind and Conceptual Competency
From Experts Determining Meaning to Artificial Intelligences Determining Meaning
Some New Distinctions: Extended Mind Internalist versus Extended Mind Externalists
Kripke, Putnam, and Burge as Extended Mind Internalists
Concept Possession, Functionalism, and Ways of Life
Implications for the View Defended in This Book
An Objection Revisited
Reply to the Objection
What Makes it a Stop Sign Detector?
Adversarial Perturbations
Explainable AI and Metasemantics
Bibliography
Index




پست ها تصادفی