توضیحاتی در مورد کتاب Mathematics Of Multilevel Systems: Data, Scaling, Images, Signals, And Fractals (Contemporary Mathematics And Its Applications: Monographs, Expositions And Lecture Notes)
نام کتاب : Mathematics Of Multilevel Systems: Data, Scaling, Images, Signals, And Fractals (Contemporary Mathematics And Its Applications: Monographs, Expositions And Lecture Notes)
عنوان ترجمه شده به فارسی : ریاضیات سیستمهای چند سطحی: دادهها، مقیاسبندی، تصاویر، سیگنالها و فراکتالها (ریاضیات معاصر و کاربردهای آن: مونوگرافها، نمایشگاهها و یادداشتهای سخنرانی)
سری :
نویسندگان : Palle E T Jorgensen, Myung-Sin Song
ناشر : WSPC
سال نشر : 2023
تعداد صفحات : 0
ISBN (شابک) : 9811268975 , 9789811268977
زبان کتاب : English
فرمت کتاب : rar درصورت درخواست کاربر به PDF تبدیل می شود
حجم کتاب : 38 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Contents
Preface
About the Authors
Road-map
Chapter 1. Introduction
1.1 Organization of the Book: A Bird’s Eye View, and Tips for the Reader
1.2 Motivation
Chapter 2. Wavelet Color Image Compression
2.1 Introduction
2.1.1 Overview
2.1.2 Motivation
2.2 Wavelet Color Image Compression
2.2.1 Methods
2.2.1.1 Forward wavelet transform
2.2.1.2 Thresholding
2.2.1.3 Entropy encoding
2.2.1.4 Reconstruction of wavelet transformed image
2.2.1.5 Inverse wavelet transformation
2.2.2 Wavelets
2.2.2.1 Multiresolution analysis
2.2.2.2 Symmetry
2.2.2.3 Vanishing moments
2.2.2.4 Size of the filters
2.2.3 Various wavelets
2.2.3.1 Haar Wavelet
2.2.3.2 Daubechies wavelets constructions
2.2.3.3 Coiflets
2.2.3.4 Biorthogonal wavelets
2.2.3.5 Symlets
2.3 Digital Image Representation and Mathematics Behind It
2.3.1 Digital image representation
2.3.1.1 Coordinate convention
2.3.1.2 Images as matrices
2.3.1.3 Color image representation in MATLAB
2.3.1.4 Indexed images
2.3.1.5 The basics of color image processing
2.3.2 Reading images
2.3.3 Wavelet decomposition of an image
2.3.3.1 Color conversion
2.3.4 Mathematical insights
2.4 Haar Wavelet Matrix Example for Wavelet Decomposition and Reconstruction
2.4.1 Examples
2.5 Wavelet Color Image Compression Results and Discussion
2.5.1 Implementation of the program
2.5.2 Discussion of the results
2.5.2.1 Wavelet lossy image compression
2.5.2.2 Barbara image compression using different wavelets and threshold values
Chapter 3. Wavelets as Multiresolutions
3.1 Multiresolutions: History, Applications, Examples, Discussion, and Algorithms
3.2 Glossary
Chapter 4. Discrete and Continuous Wavelet Transforms
4.1 Introduction
4.2 The Discrete vs. Continuous Wavelet Algorithms
4.2.1 The discrete wavelet transform
4.3 The Continuous Wavelet Transform
4.3.1 Some background on Hilbert space
4.3.1.1 Increasing the dimension
4.4 Connections to Group Theory
4.5 Tools from Mathematics
4.6 A Transfer Operator
4.7 Future Directions
4.7.1 Orthonormal bases generated by Cuntz algebras
4.7.1.1 Piecewise exponential bases on fractals
4.7.1.2 Walsh bases
4.8 List of Names and Discoveries
4.9 History
4.10 Literature
Chapter 5. Entropy Encoding, Hilbert Space, and Karhunen–Lo`eve Transforms
5.1 Introduction
5.1.1 Digital image compression
5.2 General Background
5.2.1 From data to Hilbert space
5.2.1.1 The measures Pf
5.2.1.2 The measures PT
5.3 The Karhunen–Lo`eve Transform
5.4 Frame Bounds and Subspaces
5.4.1 Supplement
5.5 Splitting Off Rank-One Operators
5.5.1 Perron–Frobenius
5.6 Weighted Frames and Weighted Frame Operators
5.6.1 B(H) = T(H)∗
5.7 Localization
5.8 Engineering Applications
5.8.1 Entropy encoding
5.8.1.1 Some terminology
5.8.2 The algorithm
5.8.3 Benefits of entropy encoding
5.9 Principal Component Analysis
5.9.1 The algorithm for a digital image application
5.9.2 Principal component analysis in a digital image
5.9.3 A matrix example
5.9.4 Digital image compression using principal component analysis
Chapter 6. Matrix Factorization and Lifting
6.1 Introduction
6.2 Matrix-Valued Functions
6.3 Systems of Filters
6.3.1 Operations on time signals
6.4 Groups of Matrix Functions
6.5 Group Actions
6.5.1 Factorizations
6.5.2 Notational conventions
6.6 Divisibility and Residues for Matrix Functions
6.6.1 The 2 × 2 case
6.6.2 The 3 × 3 case
6.6.3 The N × N case
6.7 Quantization
Chapter 7. Filters and Matrix Factorization
7.1 Introduction
7.2 Factorization Algorithm
7.3 Factorization Cases
7.3.1 Factorizations
7.3.2 The 2 × 2 case: polynomials
7.3.3 The 3 × 3 case
7.3.3.1 Comments
7.3.4 The N × N case
7.3.5 L∞(T)-matrix entries
7.3.6 Optimal factorization in the case of SLN(L∞(T))
Appendix A. Hilbert Space Basics
Appendix B. Factorization of Matrices, Algorithms, and Wavelets
B.1 Resolution and Detail
B.2 From Haar to Daubechies
B.3 Groups of Wavelets
B.4 Examples
B.4.1 The world of the spectrum
B.4.2 Wavelets on the interval [0, 5] and their associated scaling functions
Appendix C. Georg Cantor’s Chaos
C.0.1 Haar Meets Cantor
Appendix D. Markov Chains and Generalized Wavelet Multiresolutions
D.1 Introduction and Setting
D.2 Julia Sets
D.3 Multiresolutions and Generalized Wavelet Representations
References
Index