توضیحاتی در مورد کتاب Mendelian Randomization Methods for Causal Inference Using Genetic Variants
نام کتاب : Mendelian Randomization Methods for Causal Inference Using Genetic Variants
ویرایش : 2 ed.
عنوان ترجمه شده به فارسی : روشهای تصادفیسازی مندلی برای استنتاج علی با استفاده از واریانتهای ژنتیکی
سری :
نویسندگان : Stephen Burgess, Simon G. Thompson
ناشر : Chapman and Hall/CRC
سال نشر : 2021
تعداد صفحات : 226
[240]
ISBN (شابک) : 9780367341848 , 9780429324352
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 13 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Series Page
Title Page
Copyright Page
Contents
Preface to the second edition
Abbreviations
Notation
I: Understanding and performing Mendelian randomization
1. Introduction and motivation
1.1. Shortcomings of classical epidemiology
1.2. The rise of genetic epidemiology
1.3. Motivating example: The inflammation hypothesis
1.4. Other examples of Mendelian randomization
1.5. Overview of book
1.6. Summary
2. What is Mendelian randomization?
2.1. What is Mendelian randomization?
2.2. Why use Mendelian randomization?
2.3. A brief overview of genetics
2.4. Classification of Mendelian randomization investigations
2.5. Summary
3. Assumptions for causal inference
3.1. Observational and causal relationships
3.2. Finding a valid instrumental variable
3.3. Testing for a causal relationship
3.4. Example: Lp-PLA2 and coronary heart disease
3.5. Estimating a causal effect
3.6. Summary
4. Estimating a causal effect from individual-level data
4.1. Ratio of coefficients method
4.2. Two-stage methods
4.3. Example: Body mass index and smoking intensity
4.4. Computer implementation
4.5. Summary
5. Estimating a causal effect from summarized data
5.1. Motivating example: interleukin-1 and cardiovascular diseases
5.2. Inverse-variance weighted method
5.3. Heterogeneity and pleiotropy
5.4. Computer implementation
5.5. Example: Body mass index and smoking intensity reprised
5.6. Summary
6. Interpretation of estimates from Mendelian randomization
6.1. Internal and external validity
6.2. Comparison of estimates
6.3. Example: Lipoprotein(a) and coronary heart disease
6.4. Discussion
6.5. Recap of examples considered so far
6.6. Summary
II: Advanced methods for Mendelian randomization
7. Robust methods using variants from multiple gene regions
7.1. Motivating example: LDL- and HDL-cholesterol and coronary heart disease
7.2. Consensus methods
7.3. Outlier-robust methods
7.4. Modelling methods
7.5. Other methods and comparison
7.6. Example: LDL- and HDL-cholesterol and coronary heart disease reprised
7.7. Computer implementation
7.8. Summary
8. Other statistical issues for Mendelian randomization
8.1. Weak instrument bias
8.2. Allele scores
8.3. Sample overlap
8.4. Winner's curse
8.5. Selection and collider bias
8.6. Covariate adjustment
8.7. Non-collapsibility
8.8. Time and time-varying effects
8.9. Power to detect a causal effect
8.10. Choosing variants from a single gene region
8.11. Binary exposure
8.12. Alternative estimation methods
8.13. Summary
9. Extensions to Mendelian randomization
9.1. Multivariable Mendelian randomization
9.2. Network Mendelian randomization
9.3. Non-linear Mendelian randomization
9.4. Factorial Mendelian randomization
9.5. Bidirectional Mendelian randomization
9.6. Mendelian randomization and meta-analysis
9.7. Summary
10. How to perform a Mendelian randomization investigation
10.1. Motivation and scope
10.2. Data sources
10.3. Selection of genetic variants
10.4. Variant harmonization
10.5. Primary analysis
10.6. Robust methods for sensitivity analysis
10.7. Other approaches for sensitivity analysis
10.8. Data presentation
10.9. Interpretation
10.10. Summary
III: Prospects for Mendelian randomization
11. Future directions
11.1. GWAS: large numbers of genetic variants
11.2. -omics: Large numbers of risk factors
11.3. Hypothesis-free: Large numbers of outcomes
11.4. Biobanks: Large numbers of participants
11.5. Clever designs: The role of epidemiologists
11.6. Conclusion
Bibliography
Index