توضیحاتی در مورد کتاب Metal Forming: Formability, Simulation, and Tool Design
نام کتاب : Metal Forming: Formability, Simulation, and Tool Design
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : شکل دهی فلز: شکل پذیری، شبیه سازی و طراحی ابزار
سری :
نویسندگان : Chris V. Nielsen, Paulo A.F. Martins
ناشر : Academic Press
سال نشر : 2021
تعداد صفحات : 428
[418]
ISBN (شابک) : 0323852556 , 9780323852555
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 12 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
شکلدهی فلز: شکلپذیری، شبیهسازی و طراحی ابزار بر شکلپذیری فلز، مدلسازی اجزای محدود و طراحی ابزار تمرکز دارد و یک نمای کلی از تئوری، آزمایش و عمل شکلدهی فلز را در اختیار خوانندگان قرار میدهد. این کتاب شامل مباحث شکلپذیری و اجزای محدود، از جمله بینشهایی در مورد ناپایداری پلاستیک، گردنبندی، هستهزایی و ادغام حفرهها است. فصلها روش اجزای محدود، از جمله دقت، قابلیت اطمینان و اعتبار و فرمولبندی جریان المان محدود را مورد بحث قرار میدهند و به خوانندگان کمک میکنند تا فرمولهای اجزای محدود، روشهای حل تکراری، اصطکاک و تماس بین اشیاء و سایر عوامل را درک کنند. بخش های پایانی کتاب به طراحی ابزار برای فرآیندهای شکل دهی سرد، گرم و گرم می پردازد.
نمونههایی از ابزار، دستورالعملهای طراحی، و اطلاعات مربوط به مواد ابزار، روانکنندهها، پرداختها و خرابی ابزار نیز گنجانده شده است.
فهرست مطالب :
Front Matter
Copyright
Dedication
Contributors
Preface
Acknowledgements
Introduction
Further reading
Formability
Introduction
Deformation-zone geometry
Voids and void-growth mechanisms
Fractography and fracture
Uncoupled ductile damage criteria and fracture
Link between uncoupled ductile damage and fracture mechanics
Mode I-Tensile fracture
Mode II-In-plane shear fracture
Mode III-Out-of-plane shear fracture
Graphical representation of the analytical framework for ductile damage
Uncoupled ductile damage and the Lode parameter
Uncoupled ductile damage criterion due to Isik (2018)
Uncoupled ductile damage criterion due to Bao and Wierzbicki (2004)
Coupled ductile damage criteria and fracture
Micromechanics-based damage criteria
Macromechanics-based approaches
Experimental determination of the fracture loci
Sheet metal forming
Bulk metal forming
Plastic instability
Diffuse necking in uniaxial tension
Localised necking in uniaxial tension
Localised necking in biaxial tension and the forming limit curve
Representation of the forming limit curve in principal strain space
Factors influencing the forming limit curve
Representation of the forming limit curve in space of effective strain vs stress triaxiality
Experimental determination of the forming limit curve
Process defects
Rolling
Forging
Wrinkling in deep drawing
Tube bending
Metallurgy
Crystalline structure
Defects
Material matrix
Grain size
Surface quality
References
Finite element simulation: A user’s perspective
Introduction
The finite element environment
Mesh generation
Structured vs unstructured meshes
Mesh generation techniques
Mapped meshing
Sweeping
Plastering
Indirect meshing
Grid-based meshing
Nonlinearity in finite element modelling of metal forming
Kinematics of large deformations
Measures of strain
Rate of deformation
Measures of stress
Finite element formulations
Quasi-static finite element formulations
Direct iterative method
Newton-Raphson iterative methods
Convergence criteria
Finite element equations
Pros and cons of quasi-static finite element formulations
Dynamic finite element formulations
Explicit integration using the central difference method
Pros and cons of explicit dynamic formulations
Errors in finite element analysis
Modelling errors
Analysis type
Material models
Fundamental physical phenomenon
Material data
Ductile damage
Friction and heat transfer
Description of tooling
Machine tools
Numerical errors
Selection of elements
Discretisation and mesh convergence
Time step and convergence criteria
Other factors
Other errors
Validation of finite element procedures
Process-independent validation procedures
Material flow
Stress field
Distribution of forces
Convergence studies
Process-dependent validation procedures
Validation against theoretical solutions and technical data available in literature
Validation against experimental and industrial observations and measurements
References
Finite element flow formulation
Introduction
Theoretical fundamentals
Quasi-static equilibrium-A solid mechanics view
Second extremum principle-An energy view
Rates of energy
Extremum principles
Momentum balance equation-A fluid dynamics view
Viscous fluids
Differential momentum balance equation
Discretisation by finite elements
Iterative solution methods
Direct iterative method
Newton-Raphson iterative method
Line search algorithms
Explicit solution scheme
Numerical integration
Treatment of rigid zones
Treatment of friction
Contact between objects
Linear contact algorithms
Penalty-based contact algorithms
Lagrange multiplier-based contact algorithms
Contact between deformable objects
Thermo-mechanical analysis
Heat transfer equation
Finite element discretisation
Electro-thermo-mechanical analysis
Extensions of the conventional finite element flow formulation
Porous metals
Ductile polymers
Viscous flow
Anisotropic metals
Rotation between global axes and material axes
Elastic effects
References
Introduction to the finite element solid formulation
Introduction
Theoretical fundamentals
Discretisation by finite elements
Implicit vs explicit integration procedures
Rate-independent limit
References
Tool design
Introduction
Tools for compressive forming
Open-die tools
Impression-die tools (closed-die tools)
Precision tools
Conventional precision tools
Precision tools with floating dies
Precision tools with multidirectional dies
Tools for tensile, combined tensile and compressive forming, and bending
Conventional tools with single-station dies
Multidirectional tools with single-station dies
Progressive tools with multistation dies
Tools for forming by shearing
Combination tools
Compound tools
Fine blanking tools
Tool materials
Selection of tool materials
Hardening and tempering
Surface treatments and coatings
Preheating of punches and dies
Punches
Punch dimensioning
Punch design
Dies
Die dimensioning
Lamé equations
Monoblock
Prestressed container-Stress rings
Guidelines for dimensioning a prestressed container with one stress ring
Guidelines for dimensioning a prestressed container with two stress rings
Manufacture of die cores and stress rings
Strip-wound container
Die design
Rod and tube extrusion dies
Can extrusion dies
Lubrication
Tool failure
Wear to out-of-tolerance conditions
Catastrophic failure (fracture)
Thermal softening and subsequent deformation of dies
Insufficient polishing of the punches and dies
Inaccurate dies that miss target dimensions
Material choice for punches
References
Further reading
Appendices
Appendix A
Algebraic decomposition of the stress triaxiality
Appendix B
Large elastic-plastic and rigid-plastic deformations
Appendix C
Mathematics for continuum mechanics
Appendix D
Force increment ratio that is necessary for an elastic element to yield (Yamada et al., 1968)
Appendix E
Basic cold forging processes
Appendix F
Calculation of deflections and stress distributions in the die core and stress rings
Assembly of die and stress ring
Operation of die and stress ring during the extrusion process
Unloading before ejection of the workpiece
Unloading after ejection of the workpiece
Appendix G
MATLAB computer program
Listing of the MATLAB computer program
Appendix H
Fit recommendations (adapted from Fisher et al., 2008)
References
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
W
توضیحاتی در مورد کتاب به زبان اصلی :
Metal Forming: Formability, Simulation, and Tool Design focuses on metal formability, finite element modeling, and tool design, providing readers with an integrated overview of the theory, experimentation and practice of metal forming. The book includes formability and finite element topics, including insights on plastic instability, necking, nucleation and coalescence of voids. Chapters discuss the finite element method, including its accuracy, reliability and validity and finite element flow formulation, helping readers understand finite element formulations, iterative solution methods, friction and contact between objects, and other factors. The book's final sections discuss tool design for cold, warm and hot forming processes.
Examples of tools, design guidelines, and information related to tool materials, lubricants, finishes, and tool failure are included as well.