Metal-Organic Framework Composites. Volume 1: ZIF-8 Based Materials for Pharmaceutical Waste

دانلود کتاب Metal-Organic Framework Composites. Volume 1: ZIF-8 Based Materials for Pharmaceutical Waste

48000 تومان موجود

کتاب کامپوزیت های چارچوب فلزی-آلی. جلد 1: مواد مبتنی بر ZIF-8 برای زباله های دارویی نسخه زبان اصلی

دانلود کتاب کامپوزیت های چارچوب فلزی-آلی. جلد 1: مواد مبتنی بر ZIF-8 برای زباله های دارویی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب Metal-Organic Framework Composites. Volume 1: ZIF-8 Based Materials for Pharmaceutical Waste

نام کتاب : Metal-Organic Framework Composites. Volume 1: ZIF-8 Based Materials for Pharmaceutical Waste
عنوان ترجمه شده به فارسی : کامپوزیت های چارچوب فلزی-آلی. جلد 1: مواد مبتنی بر ZIF-8 برای زباله های دارویی
سری :
نویسندگان : , , , , ,
ناشر : Walter de Gruyter
سال نشر : 2023
تعداد صفحات : 192
ISBN (شابک) : 9783110792539
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Also of interest
Metal-Organic Framework Composites. Volume 1: ZIF-8 Based Materials for Pharmaceutical Waste
Copyright
Acknowledgments
Contents
List of contributors
1. Metal-organic framework introduction
1.1 Introduction
1.2 Structural features
1.3 Terephthalic structure of MOFs
1.4 Symmetry with elongation in chain length
1.5 History of MOFs
1.6 Chemistry of MOFs
1.7 Structure of metal-organic framework
1.8 Synthesis
1.9 Metal biomolecule frameworks
1.10 Conclusion
Reference
2. Metal-organic framework properties
2.1 Luminescent properties of MOFs
2.2 Different conductivity properties of MOFs
2.3 Porosity and surface area
2.4 Scalability and processability
2.4.1 Mechanochemical chemistry
2.4.2 Flow chemistry
2.4.3 Electrochemical chemistry
2.5 Conclusion
References
3. Metal-organic framework for heterogeneous catalysis
3.1 Introduction
3.2 Why MOFs are used in hetrocatalysis?
3.3 Synthesis
3.3.1 Solvothermal synthesis
3.3.2 Electrochemical synthesis
3.3.3 Mechanochemical synthesis
3.4 Applications and scope
3.5 Conclusion
References
4. Homogeneous catalysis using MOFs
4.1 Introduction
4.2 Catalysis of MOFs
4.3 Framework activities
4.3.1 Activity at organic nodes
4.3.2 Activity at organic or pseudo-organic linkers
4.4 Encapsulation of active species
4.5 Post-synthetic modifications
References
5. MOF: an emerging material for biomedical applications
5.1 Introduction
5.2 Synthesis of MOFs
5.2.1 Conventional method
5.2.2 Alternative synthesis method
5.3 Metal-organic framework for biomedical applications
5.3.1 MOF in drug delivery
5.3.2 Strategies to functionalize MOF for drug delivery
5.3.2.1 Surface adsorption
5.3.2.2 Pores encapsulation
5.3.2.3 Covalent binding
5.3.3 Functionalized MOFs
5.3.4 Applications in drug delivery
5.3.5 Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment
5.3.5.1 A nano-sized MOF for oral drug delivery
5.4 MOF as biosensors
5.4.1 MOFs applications in biosensors
5.4.2 MOF in biosensors
5.4.3 The function of MOFs in biosensors
5.5 MOF in biomedical imaging
References
6. Pharmaceutical wastes: an overview
6.1 Introduction
6.2 Classification of PhW
6.2.1 Over-the-counter drug waste
6.2.2 Hazardous waste
6.2.3 Nonhazardous waste
6.2.4 Controlled drug waste
6.2.5 Veterinary-use drugs
6.3 Classification of pharmaceutical dosage from waste
6.4 Sources of PhW
6.4.1 Domestic release
6.4.2 Veterinary release
6.4.3 Hospital effluents
6.4.4 Aquaculture
6.5 Occurrence of pharmaceuticals in aquatic system
6.6 Removal of pharmaceuticals from an aquatic environment
6.7 Conclusion and future prospects
References
7. Recent advancement and development in MOF-based materials for the removal of pharmaceutical waste
7.1 Introduction
7.1.1 Pharmaceutical waste
7.1.2 Composition of pharmaceutical waste
7.1.3 Most prominent compounds in pharmaceutical waste
7.2 Metal-organic frameworks
7.2.1 MOFs for the removal of pharmaceutical waste
7.2.1.1 Removal of antibiotics by MOFs
7.2.1.2 Removal of lipid-lowering drugs
7.2.1.3 Removal of anti-inflammatory drugs
7.3 Recent advancement and development
7.3.1 Insertion of metal–ligand coordination in MOFs
7.3.2 Addition of functional groups
7.3.3 Doping of MOFs
7.3.4 Polymer coupling
7.3.5 Photocatalytic activity
7.3.6 Green synthesis
7.3.6.1 Less hazardous solvents
7.3.6.2 Nontoxic metals
7.4 Conclusion
References
8. Future prospective of metal-organic frameworks for pharmaceutical wastes
8.1 Introduction
8.1.1 Pharmaceutical waste
8.1.2 Composition of pharmaceutical waste
8.1.2.1 Who regulates disposal of medical waste?
8.1.2.2 Pharmaceutical waste in solid form
8.1.2.3 Pharmaceutical waste in liquid form
8.1.2.4 Common compounds in pharmaceutical waste
8.1.2.4.1 Hazardous chemicals
8.1.2.4.2 Nonhazardous
8.1.3 Treatment of pharmaceutical waste
8.1.3.1 Metal-organic frameworks
8.1.3.2 Pharmaceutical waste treatment by MOFs
8.2 Future perspective
8.3 Conclusion
References
9. MOF – a promising material for energy applications
9.1 Introduction
9.2 MOF application as fuel cell
9.3 Electrochemical energy conversion devices
9.3.1 Proton conduction
9.4 MOF as energy storage and conversion
9.4.1 Batteries
9.4.2 Metal ion batteries
9.4.3 Metal–sulfur batteries
9.4.4 Other batteries
9.5 Supercapacitors
9.6 Solar energy harvest and conversion
9.7 Photocatalytic hydrogen production
9.7.1 Photocatalytic carbon dioxide reduction
9.7.2 Photovoltaic conversion
9.8 Electrochemical energy conversion and storage
9.8.1 Electrocatalytic water splitting
9.8.2 Electrocatalytic hydrogen evolution reaction (HER)
9.9 Opportunities and challenges toward practical applications
9.10 Conclusion
References
10. Polymer-coated MOF for pharmaceutical waste removal
10.1 Introduction
10.2 MOF applications’ potential as alternative sorbent for pharmaceutical waste removal
10.3 MOFs as a versatile platform for pharmaceuticals capture
10.3.1 MILs and their derivatives
10.3.1.1 Pristine MILs
10.3.1.2 MIL composites
10.3.1.3 MILs-derived materials
10.3.2 Zeolitic imidazolate frameworks and their derivatives
10.3.2.1 Pristine zeolitic imidazolate frameworks
10.3.2.2 Zeolitic imidazolate frameworks composites
10.3.2.3 ZIFs-derived materials
10.3.3 Universitetet i Oslo (UiOs) and their derivatives
10.3.3.1 UiOs
10.3.3.2 UiO composites
10.3.3.3 UiOs-derived materials
10.4 Other MOFs and their derivatives
10.5 Conclusion
References
11. MOF-derived nanocomposites for the removal of ciprofloxacin
11.1 Introduction
11.2 Substratum of MOF-derived nanocomposite synthesis
11.2.1 Self-templated MOFs and external-templated MOFs
11.2.2 Zero-dimensional, 1D, 2D, and 3D nanocomposites
11.3 Synthesis of various nanostructures from MOFs
11.4 Ciprofloxacin
11.5 Ciprofloxacin consequence on living organisms and the environment
11.6 General idea of strategies for CIP mitigation
11.7 MOF-derived zeolitic imidazolate frameworks (ZIFs) and MIL-100/101
11.7.1 ZIF-8 catalysis and ciprofloxacin
11.7.2 ZIF-67 catalysis and ciprofloxacin
11.7.3 MIL-100/101 catalysis and ciprofloxacin
11.8 Knowledge gaps regarding CIP
References
Index




پست ها تصادفی