Methods of Soil Analysis: Physical & Mineralogical Methods (Sssa Book Series No 5)

دانلود کتاب Methods of Soil Analysis: Physical & Mineralogical Methods (Sssa Book Series No 5)

45000 تومان موجود

کتاب روش‌های آنالیز خاک: روش‌های فیزیکی و کانی‌شناسی (Sssa شماره 5) نسخه زبان اصلی

دانلود کتاب روش‌های آنالیز خاک: روش‌های فیزیکی و کانی‌شناسی (Sssa شماره 5) بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 6


توضیحاتی در مورد کتاب Methods of Soil Analysis: Physical & Mineralogical Methods (Sssa Book Series No 5)

نام کتاب : Methods of Soil Analysis: Physical & Mineralogical Methods (Sssa Book Series No 5)
ویرایش : 2. ed., reprint
عنوان ترجمه شده به فارسی : روش‌های آنالیز خاک: روش‌های فیزیکی و کانی‌شناسی (کتاب Sssa شماره 5)
سری :
نویسندگان : , , ,
ناشر : American Society of Agronomy
سال نشر : 2006
تعداد صفحات : 1206
ISBN (شابک) : 9780891188117 , 0891188118
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 126 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


00
0
Half-Title Page
Series Page
Title Page
Copyright Page
CONTENTS
DEDICATION
FOREWORD
PREFACE
CONTRIBUTORS
Conversion Factors for SI and non-SI Units
1
2
Chapter 2: Sampling
2-1 Introduction
2-2 Variation of Soils
2-3 Sampling Plans
2-3.1 Judgment Sample
2-3.2 Simple Random Sample
2-3.3 Stratified Random Sample
2-3.4 Systematic Sample
2-4 Sources of Errors
2-5 Subsampling
2-6 Composite Samples
2-7 References
3
Chapter 3: Geostatistical Methods Applied to Soil Science
3-1 Introduction
3-2 Quantification of Spatial Interdependence
3-2.1 Correlograms
3-2.2 Variograms
3-2.3 Range of Influence and Integral Scale
3-3 Punctual Kriging
3-3.1 Example 4. Punctual Kriging-One-dimensional
3-3.2 Example 5. Punctual Kriging-Two-dimensional
3-3.3 Example 6. Kriging Map for Salinity
3-3.4 Example 7. Efficiency of Sampling-Infiltration
3-4 Block Kriging
3-4.1. Example 8. Block Kriging for Salinity
3-5 Sampling Strategies for Specified Estimation Error
3-5.1 Example 9. Sampling Error
3-6 Further Applications
3-6.1 Universal Kriging
3-6.2 Co-Regionalization
3-6.3 Conditional Simulation
3-6.4 Miscellaneous Comments and Notes
3-7 Discussion
3-8 References
4
Chapter 4: Extraneous Values
4-1 Introduction
4-2 The Problem of Estimation (Use of the Median and Range)
4-3 Confidence Limits as Estimates
4-4 The Problem of Designating Extraneous Values
4-5 Recommended Rules for Designating Extraneous Values
4-6 Recommended Rules for Estimation in the Presence of Extraneous Values
4-7 Test of Hypotheses (Trimmed and Winsorized t-Tests)
4-8 References
5
Chapter 5: Pretreatment for Mineralogical Analysis
5-1 General Introduction
5-2 Removal of Soluble Salts and Carbonates
5-2.1 Introduction
5-2.2 Methods
5-3 Removal of Organic Matter
5-3.1 Introduction
5-3.2 Method
5-4 Removal of Free Iron Oxides
5-4.1 Introduction
5-4.2 Method
5-5 Particle-Size Separations
5-6 References
6
Chapter 6: Oxides, Hydroxides, and Aluminosilicates
6-1 Introduction
6-2 Quartz and Feldspars
6-2.1 Introduction
6-2.2 Principles
6-2.3 Method
6-3 Noncrystalline Aluminosilicates and Hydrous Oxides by Acid Ammonium Oxalate in the Dark
6-3.1 Introduction
6-3.2 Principles
6-3.3 Method
6-4 Free Iron-Aluminum Oxides and Hydroxides
6-4.1 Introduction
6-4.2 Principles
6-4.3 Method
6-5 Poorly Crystalline Aluminosilicates
6-5.1 Introduction
6-5.2 Principles
6-5.3 Method
6-6 Smectite, Vermiculite, and CEC Hysteresis
6-6.1 Introduction
6-6.2 Principles
6-6.3 Method for Vermiculite
6-6.4 CEC Hysteresis of Noncrystalline Aluminosilicates
6-7 Rutile and Anatase
6-7.1 Introduction
6-7.2 Principles
6-7.3 Method
6-8 References
7
Chapter 7: Thermal Analysis Techniques
7-1 Introduction
7-2 Principles of Reactions and Analysis
7-2.1 General Principles
7-2.2 Differential Thermal Analysis
7-2.3 Differential Scanning Calorimetry
7-2.4 Thermogravimetry
7-3 Methods
7-3.1 Differential Thermal Analysis
7-3.2 Differential Scanning Calorimetry
7-3.3 Thermogravimetry
7-4 References
8
Chapter 8: Petrographic Microscope Techniques
8-1 General Introduction
8-2 Grains
8-2.1 Introduction
8-2.2 Heavy-liquid Separations
8-2.3 Slide Preparation
8-2.4 Grain Analyses
8-3 Thin Sections
8-3.1 Introduction
8-3.2 Sampling
8-3.3 Impregnation
8-3.4 Cutting and Finishing
8-3.5 Observations and Interpretations
8-4 Applications
8-5 Glossary of Micromorphology Terms
8-6 References
9
Chapter 9: Magnetic Methods
9-1 Introduction
9-2 Magnetic Susceptibility
9-2.1 Principles
9-2.2 Apparatus
9-2.3 Procedure
9-2.4 Comments
9-3 Electron Spin Resonance (ESR)
9-3.1 Principles
9-3.2 Apparatus
9-3.3 Procedure
9-3.4 Comments
9-4 Nuclear Magnetic Resonance (NMR)
9-4.1 Principles
9-4.2 Apparatus
9-4.3 Procedure
9-4.4 Comments
9-5 References
10
Chapter 10: Electron Microprobe Analysis
10-1 Introduction
10-2 Principles
10-3 Instrument
10-3.1 Electron Source and Optics
10-3.2 Specimen Stage and Optical Microscope
10-3.3 Electron-beam Scanning Devices
10-3.4 X-ray Detectors
10-4 Specimen Preparation
10-4.1 Specimen Mounting
10-4.2 Specimen Polishing
10-4.3 Surface Coating
10-5 Quantitative Analysis
10-5.1 Instrumental Factors
10-5.2 Matrix Corrections
10-6 Monte Carlo Method
10-7 Applications in Soil Analysis
10-7.1 Chemical and Biological Weathering
10-7.2 Phosphates in Soils
10-7.3 Ferromanganiferous Concretions
10-7.4 Silicate Minerals
10-7.5 Geochemical Investigations
10-8 Reference Books
10-9 References
11
Chapter 11: Infrared Spectrometry
11-1 General Introduction
11-2 Principles
11-2.1 Origin of Spectra
11-2.2 Infrared Spectrometers
11-2.3 Organic Spectra
11-2.4 Inorganic Spectra
11-3 Sample Preparation
11-3.1 Gases
11-3.2 Liquids
11-3.3 Solids
11-3.4 Techniques of Sample Presentation
11-4 Functional-Group and Qualitative Analysis of Organic Compounds
11-4.1 Materials
11-4.2 Procedure
11-4.3 Interpretation of Spectra
11-5 Identification and Characterization of Amorphous and Crystalline Inorganic or Mineral Phases
11-5.1 Materials
11-5.2 Procedure
11-5.3 Interpretation of Spectra
11-6 Quantitative Analysis
11-6.1 Introduction
11-6.2 Materials
11-6.3 Procedure
11-6.4 Calibration Curve
11-6.5 Comments
11-7 Spectral Data Collection and Manipulation
11-8 References
12
Chapter 12: X-Ray Diffraction Techniques
12-1 General Introduction
12-2 Principles of X-Ray Diffraction
12-3 Preparation of Samples
12-3.1 Introduction
12-3.2 Sample Dispersion for Particle-Size Segregation
12-3.3 Separation of Particle-Size Fractions
12-3.4 Saturation of Exchange Complex
12-3.5 Solvation with Glycerol
12-3.6 Mounting
12-4 X-Ray Examination of Samples
12-4.1 Special Apparatus
12-4.2 Procedure
12-4.3 Comments
12-5 Criteria for Differentiation of Phyllosilicate Species
12-6 Qualitative Interpretation of Diffraction Patterns
12-6.1 Direct Comparison
12-6.2 Measurement of Diffraction Spacings
12-6.3 Identification of Mineral Species
12-7 Quantitative Interpretation of Diffraction Patterns
12-8 References
13
Chapter 13: Bulk Density
13-1 General Introduction
13-2 Core Method
13-2.1 Introduction
13-2.2 Method
13-3 Excavation Method
13-3.1 Introduction
13-3.2 Method
13-4 Clod Method
13-4.1 Introduction
13-4.2 Method
13-5 Radiation Methods
13-5.1 Introduction
13-5.2 Methods
13-6 References
14
Chapter 14: Particle Density
14-1 Introduction
14-2 Principles
14-3 Pycnometer Method
14-3.1 Special Apparatus
14-3.2 Procedure
14-4 Submersion Method
14-4.1 Special Apparatus
14-4.2 Procedure
14-5 Comments
14-6 References
15
Chapter 15: Particle-size Analysis
15-1 Introduction
15-2 Principles
15-2.1 Pretreatment and Dispersion Techniques
15-2.2 Sieving
15-2.3 Sedimentation
15-3 Sample Preparation
15-3.1 Apparatus
15-3.2 Method
15-3.3 Comments
15-4 Pipet Method
15-4.1 Apparatus and Reagents
15-4.2 Procedures
15-4.4 Comments
15-5 Hydrometer Method
15-5.1 Apparatus and Reagents
15-5.2 Procedure
15-6 Other Methods
15-7 References
16
Chapter 16: Specific Surface
16-1 Introduction
16-2 Principles
16-2.1 Adsorption Isotherms
16-2.2 Retention of Polar Liquids
16-3 Method
16-3.1 Special Apparatus
16-3.2 Chemicals
16-3.3 Procedure
16-3.4 Comments
16-4 References
17
Chapter 17: Aggregate Stability and Size Distribution
17-1 Introduction
17-1.1 Definition and General Approaches
17-1.2 Forces Involved in Aggregation
17-2 Principles
17-2.1 Dry Aggregates
17-2.2 Wet Aggregates
17-2.3 Methods of Expressing the Size Distribution of Aggregates
17-3 Methods
17-3.1 Dry Aggregates: Equipment and Procedure for Determining Size Distribution and Resistance to Abrasion
17-3.2 Wet Aggregates
17-4 References
18
Chapter 18: Porosity
18-1 Introduction
18-2 Total Porosity
18-2.1 Calculation from Particle and Bulk Densities
18-2.2 Gas Pycnometer Method
18-3 Pore Size Distribution
18-3.1 Water Desorption Method
18-3.2 Mercury Intrusion Method
18-4 References
19
Chapter 19: Penetrability
19-1 Introduction
19-2 Principles
19-3 Pocket Penetrometer
19-3.1 Introduction
19-3.2 Method
19-4 Cone Penetrometer
19-4.1 Introduction
19-4.2 Method
19-5 Small-Diameter Friction-Sleeve Cone Penetrometer
19-5.1 Introduction
19-5.2 Method
19-6 References
20
Chapter 20: Compressibility
20-1 Introduction
20-2 Principles
20-3 Methods
20-3.1 Special Apparatus
20-3.2 Procedure
20-3.3 Comments
20-4 References
21
21 Water Content
21-1 General Information
21-2 Direct Methods
21-2.1 General Principles
21-2.2 Gravimetry with Oven Drying
21-2.3 Gravimetry with Microwave Oven Drying
21-3 Indirect Methods
21-3.1 Introduction
21-3.2 Electrical Conductivity and Capacitance
21-3.3 Neutron Thermalization
21-3.4 Gamma Ray or Neutron Attenuation
21-4 References
22
Chapter 22: Water Potential: Piezometry
22-1 Introduction
22-2 Principles
22-3 Method of Installing Piezometers by Driving
22-3.1 Special Apparatus (Fig. 22-2)
22-3.2 Procedure
22-3.3 Comments
22-4 Method of Installing Piezometers by Jetting
22-4.1 Special Apparatus
22-4.2 Procedure
22-4.3 Comments
22-5 Method of Flushing and Testing Piezometers
22-5.1 Special Apparatus
22-5.2 Procedure
22-5.3 Comments
22-6 Method of Measuring Water Levels in Piezometers
22-6.1 Special Apparatus (Fig. 22-4)
22-6.2 Procedure
22-6.3 Comments
22-7 Method of Installing Tensiometers
22-7.1 Procedure
22-7.2 Comments
22-8 Interpretation of Hydraulic-Head Readings
22-9 References
23
Chapter 23: Water Potential: Tensiometry
23-1 Introduction
23-2 Principles
23-3 Field Tensiometry
23-3.1 Apparatus
23-3.2 Procedures
23-3.3 Applications
23-3.4 Comments
23-4 Laboratory Tensiometry
23-4.1 Apparatus
23-4.2. Procedures
23-4.3 Applications and Comments
23-5 References
24
Chapter 24: Water Potential: Thermocouple Psychrometry
24-1 Introduction
24-2 Principles of Operation
24-2.1 Temperature Fluctuations with Time
24-2.2. Temperature Gradients
24-2.3 Vapor Pressure Gradients
24-2.4 Wet Junction Characteristics
24-3 Methods
24-3.1 Apparatus
24-3.2 Calibration
24-3.3 Temperature Correction
24-3.4 Sample Preparation
24-3.5 Measuring Extremely Low Water Potentials
24-3.6 Separation of Osmotic and Matric Potential Components
24-4 Appendix
24-5 References
25
Chapter 25: Water Potential: Miscellaneous Methods
25-1 Introduction
25-2 Water Potential Measurements with Electrical Resistance Sensors
25-2.1 Principles
25-2.2 Apparatus
25-2.3 Calibration
25-2.4 Precautions and Errors
25-3 Water Potential Measurement with Heat Dissipation Sensors
25-3.1 Principles
25-3.2 Sensor Construction
25-3.3 Calibration Procedures
25-3.4 Installation
25-3.5 Measurement Techniques and Interpretation
25-3.6 Precautions and Errors
25-4 Water Potential Measurement Using the Filter Paper Technique
25-4.1 Principle
25-4.2 Measurement Procedure
25-4.3 Precautions and Errors
25-5 Water Potential Measurement Using Vapor Equilibration
25-5.1 Principle
25-5.2 Procedure
25-5.3 Precautions and Errors
25-6 References
26
Chapter 26: Water Retention: Laboratory Methods
26-1 General Principles
26-2 Samples
26-3 Wetting Fluid
26-4 Wetting of Samples
26-5 Temperature Effects
26-6 Method
26-6.1 Apparatus
26-6.2 Procedure
26-6.3 Calculations
26-7 Comments
26-7.1 Determination of Wetting Curves
26-7.2 Water Retention of Stony Soils
26-8 Other Methods
26-8.1 Weighable Cells
26-8.2 Suction Tables
26-8.3 High-Range Membrane Method
26-8.4 Psychrometer Method
26-8.5 Vapor Equilibrium Method
26-8.6 Osmotic Method
26-8.7 Null Method
26-8.8 Dynamic Methods
26-9 References
27
Chapter 27: Water Retention: Field Methods
27-1 Introduction
27-2 Principles
27-2.1 Site-related Considerations
27-2.2 Instrument-related Considerations
27-2.3 Nature and State of Soil Volume
27-3 Method
27-3.1 Method for 0 to -50 kPa Range
27-3.2. Method for Evapotranspiration Range of Potentials
27-4 Data Handling
27-4.1 Data Conversion
27-4.2 Smoothing θ(t), ψ(t) Data
27-4.3 Derivation of Simultaneous θ and ψ Values
27-4.4 Determining θ(ψ) for the Pedon
27-4.5 Mathematical Retention Functions
27-5 Error Analysis
27-6 Spatial Heterogeneity
27-6.1 Statistical Methods
27-6.2 Scaling
27-7 Comments
27-8 References
28
Chapter 28: Hydraulic Conductivity and Diffusivity: Laboratory Methods
28-1 Introduction
28-2 General Principles
28-3 Samples and Test Fluid
28-3.1 Samples
28-3.2 Test Fluid
28-3.3. Preparation of Deaerated Solution
28-4 Hydraulic Conductivity of Saturated Soils
28-4.1 Constant Head Method
28-4.2 Falling-Head Method
28-5 Conductivity and Diffusivity of Unsaturated Soils
28-5.1 Steady-state Head Control Method
28-5.2 Steady-state Flux Control Method
28-5.3 Nonsteady-state Boltzmann Transform Methods
28-5.4 Sorptivity Method
28-6 Alternative Methods
28-6.1 Instantaneous Profile Method
28-6.2 Inflow-outflow through a High-resistance Porous Plate
28-6.3 Unit-gradient Drainage Method
28-6.4 Parameter Identification Method
28-7 References
29
Chapter 29: Hydraulic Conductivity of Saturated Soils: Field Methods
29-1 Introduction
29-2 Shallow Water Table Methods
29-2.1 Auger-hole Method
29-2.2. Piezometer Method
29-2.3 Other Methods
29-3 Deep Water Table Methods
29-3.1 Double-tube Method
29-3.2 Shallow Well Pump-in Method
29-3.3 Other Methods
29-4 Comments
29-5 References
30
Chapter 30: Hydraulic Conductivity, Diffusivity, and Sorptivity of Unsaturated Soils: Field Methods
30-1 Introduction
30-2 Unsteady Drainage-Flux Method
30-2.1 Principles
30-2.2 Method
30-3 Simplified Unsteady Drainage-Flux Method
30-3.1 Principles
30-3.2 Method
30-4 Crust-Imposed Steady Flux Method
30-4.1 Principles
30-4.2 Method
30-5 Sprinkler-Imposed Steady Flux Method
30-5.1 Principles
30-5.2 Method
30-5.3 Comments
30-6 Sorptivity by Ponded Infiltration
30-6.1 Principles
30-6.2 Method
30-7 Sorptivity by Infiltration at Negative Matric Pressure
30-7.1 Principles
30- 7.2 Method
30-8 References
31
Chapter 31: Hydraulic Conductivity of Unsaturated Soils: Prediction and Formulas
31-1 Introduction
31-2 Theory and Computational Formulas
31-2.1 General Concepts
31-2.2 Empirical Forms for K(ψ) and K(θ)
31-2.3 Computation Based on Macroscopic Models
31-2.4 Computation of Relative Hydraulic Conductivity Based on Statistical Models
31-2.5 Hysteresis of the Hydraulic Conductivity
31-3 Recommendations
31-3.1 Case A
31-3.2 Case B
31.3.3 Case C
31.3.4 Case D
31-4 References
32
Chapter 32: Intake Rate: Cylinder Infiltrometer
32-1 Introduction
32-2 Principles
32-2.1 Time and Depth Effects
32-2.2 Restricting Surface Layers
32-2.3 Errors Due to Lateral Divergence of Flow
32-2.4 Other Sources of Error
32-3 Method
32-3.1 Construction
32-3.2 Single- and Double-Ring Infiltrometers
32-3.3 Installation
32-3.4. Water Supply, Constant Water Depth, and Infiltration Measurement
32-3.5 Seepage Meters
32-3.6 Variability and Number of Measurements
32-4 Comments
32-5 References
33
Chapter 33: Intake Rate: Sprinkler Infiltrometer
33-1 Introduction
33-2 Design Parameters
33-2.1 Rainfall Intermittency
33-3 Simulator Systems
33-3.1 Nozzle Systems
33-3.2 Drop-Former Systems
33-3.3 System Modifications
33-4 A Recommended Sprinkling Infiltration System
33-4.1 Apparatus
33-4.2 Equipment Suppliers
33-4.3 Procedure
33-4.4 Data Processing
33-5 Comments
33-5.1 North Central Regional Project
33-5.2 Evaluation of C-factor in USLE
33-6 Conclusions
33-7 References
34
Chapter 34: Intake Rate: Border and Furrow
34-1 Introduction
34-2 The Volume Balance Advance Method
34-2.1 Principles
34-2.2 Equipment
34-2.3 Procedures
34-2.4 Data Analysis
34-2.5 Comments
34-3 The Inflow-Outflow Method
34-3.1 Principles
34-3.2 Procedures
34-3.3 Data Analysis
34-3.4 Comments
34-4 Recirculating Flow Method
34-4.1 Principles
34-4.2 Equipment
34-4.3 Procedure
34-4.4 Data Analysis
34-4.5 Comments
34-5 References
35
Chapter 35: Evaporation from Bare Soil Measured with High Spatial Resolution
35-1 Introduction
35-2 First-Stage Evaporimeter Method
35-2.1 Principles
35-2.2 Method
35-3 Microlysimeter Method
35-3.1 Principles
35-3.2 Method
35-4 References
36
Chapter 36: Field Capacity and Available Water Capacity
36-1 General Information
36-2 Field Capacity
36-2.1 In Situ Field Capacity
36-2.2 Field Capacity Approximations
36-3 Container Capacity
36-3.1. Principle
36-3.2. Apparatus
36-3.3. Procedure
36-3.4. Comments
36-4 Permanent Wilting Point
36-4.1. Sunflower Method for Permanent Wilting Point (PWP)
36-4.2 Pressure Outflow Apparatus PWP Approximation
36-5 Available Water Capacity
36-5.1. Principle
36-5.2. Procedure
36-5.3. Comments
36-6 References
37
Chapter 37: Temperature
37-1 General Introduction
37-2 Kinds of Thermometers Used in Soils Work
37-2.1 Introduction
37-2.2 Mercury or Liquid-in-Glass Thermometers
37-2.3 Bimetallic Thermometers
37-2.4 Bourdon Thermometers
37-2.5 Electrical Resistance Thermometers
37-2.6 Thermocouples
37-3 Calibration of Thermometers
37-3.1 Introduction
37-3.2 Principles
37-3.3 Method
37-4 Field Measurements
37-4.1 Introduction
37-4.2 Methods
37-5 References
38
Chapter 38: Heat Capacity and Specific Heat
38-1 Introduction
38-2 Principles
38-3 Method
38-3.1 Special Apparatus
38-3.2 Procedure
38-3.3 Comments
38-4 References
39
Chapter 39: Thermal Conductivity and Diffusivity
39-1 General Introduction
39-2 General Principles
39-3 Thermal Conductivity
39-3.1 Introduction
39-3.2 Principles
39-3.3 Method
39-4 Thermal Diffusivity
39-4.1 Principles
39-4.2 Method
39-5 References
40
Chapter 40: Heat Flux
40-1 Introduction
40-2 Calorimetric Method
40-2.1 Principles
40-2.2 Procedure
40-2.3 Apparatus
40-2.4 Comments
40-3 The Gradient Method
40-3.1 Principles
40-3.2 Procedure
40-3.3 Apparatus
40-3.4 Comments
40-4 The Combination Method
40-4.1 Principles
40-4.2 Apparatus and Procedure
40-4.3 Comments
40-5 Soil Heat Flux Plate Method
40-5.1 Theoretical Basis
40-5.2 Apparatus
40-5.3 Calibration Procedure
40-5.4 Comments
40-6 Further Comments
40-7 References
41
Chapter 41: Heat of Immersion
41-1 Introduction
41-2 Principles
41-3 Method
41-3.1 Special Apparatus
41-3.2 Procedure
41-3.3 Comments
41-4 References
42
Chapter 42: Solute Content
42-1 Introduction
42-2 Collection of Soil Water Samples Using In Situ Samplers
42-2.1 Principles
42-2.2 Apparatus
42-2.3 Procedure
42-3 Measuring Soluble Salts With In Situ or Remote Monitors
42-3.1 Porous Matrix Sensors
42-3.2 Bulk Soil Electrical Conductivity Sensors
42-4 References
43
Chapter 43: Solute Diffusivity
43-1 Introduction: Solutes in Water
43-2 Diffusion Concepts
43-2.1 Fick\'s First Law (for Steady-state Diffusion)
43-2.2 Fick\'s Second Law (Transient State)
43-3 Steady-State Method
43-3.1 Principles
43-3.2 Apparatus
43-3.3 Procedure
43-3.4 Comments
43-4 Transient-State Methods
43-4.1 Principles
43-4.2 Apparatus for Linear Transient Measurements
43-4.3 Procedure for Linear Transient-state Measurements
43-4.4 Comments on Linear Transient-state Measurements
43-5 Radial Transient Conditions
43-6 General Comments
43-7 References
44
Chapter 44: Solute Dispersion Coefficients and Retardation Factors
44-1 Introduction
44-2 Theoretical Principles
44-2.1 Transport Equation
44-2.2 Boundary Conditions and Analytical Solutions
44-3 Experimental Principles
44-3.1 Special Apparatus
44-3.2 Experimental Procedure
44-4 Method I: Trial and Error
44-4.1 Principles, Procedure, and Example
44-4.2 Comments
44-5 Method II: From the Slope of an Effluent Curve
44-5.1 Principles
44-5.2 Procedure
44-5.3 Example
44-5.4 Comments
44-6 Method III: From a Log-Normal Plot of the Effluent Curve
44-6.1 Principles
44-6.2 Procedure
44-6.3 Example
44-6.4 Comments
44-7 Method IV: Least-Squares Analysis of the Effluent Curve
44-7.1 Principles
44-7.2 Comments
44-8 Method V: From Concentration-Distance Curves
44-9 Other Transport Models
44-10 General Comments
44-11 Appendix
44-12 References
45
Chapter 45: Water and Solute Flux
45-1 General Introduction
45-2 Water Flux
45-2.1 Soil Water Flux Meter
45-2.2 Water Content Method
45-3 Solute Flux
45-3.1 Average Concentration Method
45-3.2 Approximate Analytic Solution Method
45-3.3 A Model for Long-term Estimation of Solute Flux
45-3.4 Model for Short-term Estimation of Water and Solute Movement
45-4 Summary
45-5 References
46
Chapter 46: Gas Diffusivity
46-1 Introduction
46-2 Laboratory Method
46-2.1 Principles
46-2.2 Apparatus and Materials
46-2.3 Procedure
46-2.4 Comments
46-3 Field Method
46-3.1 Principles
46-3.2 Apparatus and Materials
46-3.3 Procedure
46-3.4 Comments
46-4 References
47
Chapter 47: Gas Flux
47-1 Introduction
47-2 Flux Calculated From Fick\'s Law
47-2.1 Principles
47-2.2 Apparatus and Materials
47-2.3 Procedure
47-2.4 Comments
47-3 Closed Chamber Method
47-3.1 Principles
47-3.2 Apparatus and Materials
47-3.3 Procedure
47-3.4 Comments
47-4 Flow-through Chamber Method
47-4.1 Principles
47-4.2 Apparatus and Materials
47-4.3 Procedure
47-4.4 Comments
47-5 Comments on Mechanisms Causing Mass Flow
47-6 References
48
Chapter 48: Air Permeability
48-1 Introduction
48-2 Principles
48-3 Methods
48-3.1 Unsteady-state Methods
48-3.2 Steady-state Methods
48-3.3 Other Steady-state Methods
48-4 Limitations
48-5 References
49
Chapter 49: Oxygen Electrode Measurement
49-1 Introduction
49-2 Platinum Electrode Method
49-2.1 Principles
49-2.3 Procedures
49-2.4 Comments
49-3 Membrane Electrode Method
49-3.1 Principles
49-3.2 Equipment
49-3.3 Procedures
49-3.4 Comments
49-4 References
50
Chapter 50: Air Pressure Measurement
50-1 Introduction
50-2 Principles
50-2.1 General
50-2.2 Measurement System Parameters
50-3 Methods
50-3.1 Instrument Construction
50-3.2 Installation and Operation
50-4 References
51
SUBJECT INDEX




پست ها تصادفی