Microfluidics and Bio-MEMS: Devices and Applications

دانلود کتاب Microfluidics and Bio-MEMS: Devices and Applications

51000 تومان موجود

کتاب Microfluidics و Bio-MEMS: دستگاه ها و برنامه ها نسخه زبان اصلی

دانلود کتاب Microfluidics و Bio-MEMS: دستگاه ها و برنامه ها بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 12


توضیحاتی در مورد کتاب Microfluidics and Bio-MEMS: Devices and Applications

نام کتاب : Microfluidics and Bio-MEMS: Devices and Applications
ویرایش : 1
عنوان ترجمه شده به فارسی : Microfluidics و Bio-MEMS: دستگاه ها و برنامه ها
سری :
نویسندگان :
ناشر : Jenny Stanford Publishing
سال نشر : 2020
تعداد صفحات : 566
ISBN (شابک) : 9814800856 , 9789814800853
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 27 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Title Page
Copyright Page
Contents
Preface
1 Microfluidic Technologies for Cell Manipulation, Therapeutics, and Analysis
1.1 Introduction
1.2 Microfluidic Cell Capture Techniques
1.2.1 Microdroplet-Based Cell Trapping
1.2.2 Cell Trapping through Microarray Devices
1.2.3 Cell Trapping through Hydrodynamic Systems and Microvortices
1.2.4 Miscellaneous Techniques for Cell Trapping
1.3 Microfluidic Single-Cell Therapy and Analysis
1.3.1 Electroporation
1.3.2 Mechanoporation
1.3.3 Optoporation
1.4 Microfluidic Cell Diagnosis and Analysis
1.4.1 Cell Diagnosis
1.4.2 Cell Analysis
1.4.2.1 Droplet-based analytical techniques
1.4.2.2 Microfluidic devices for massively parallel cell analysis
1.4.2.3 Miscellaneous analysis employing microfluidic devices
1.5 Future Prospects
1.6 Conclusions
2 Optical Manipulation of Cells
2.1 Introduction
2.2 Photodynamic and Electrokinetic Phenomena
2.2.1 Dielectrophoresis
2.2.2 AC Electro-osmosis
2.2.3 Electrothermal Effect
2.3 Optical Trapping
2.3.1 Working Principle
2.3.2 Configurations of Optical Traps
2.3.2.1 Single-beam optical trap
2.3.2.2 Dual-beam optical trap
2.3.2.3 Multiple optical traps
2.3.3 Applications of Optical Trapping in Biology
2.3.3.1 Cell manipulation
2.3.3.2 Studies of cell-to-cell interactions
2.3.3.3 Robot-tweezer manipulation system
2.3.3.4 Manipulation of subcellular organelles
2.4 Optoelectronic Tweezers
2.4.1 Device Design, Working Principle, and Developments
2.4.2 Applications of an Optoelectronic Tweezer
2.4.2.1 Cell lysis
2.4.2.2 Cell trapping, alignment, and patterning
2.4.2.3 Electroporation
2.4.2.4 Cell selection, identification, and separation
2.4.2.5 Cellular intrinsic properties
2.5 Rapid Electrokinetic Patterning
2.5.1 Setup and Working Principle
2.5.2 Biological Applications of REP
2.5.2.1 Patterning, translating, and sorting
2.6 Conclusions
3 Micro-Robots/Microswimmers for Biomedical Applications
3.1 Introduction
3.2 Propulsion Mechanism
3.2.1 Magnetic Propulsion
3.2.2 Bubble Propulsion
3.2.3 Biological Propulsion
3.2.4 Self-Thermophoresis
3.3 Materials and Fabrication Techniques
3.3.1 Tubular Micro-Robots
3.3.1.1 Rolled-up technology
3.3.1.2 Template synthesis
3.3.2 Helical Micro-Robots
3.3.3 Flexible Tail Micro-Robots
3.3.4 Janus Micro-Robots
3.4 Biomedical Applications
3.4.1 Delivery
3.4.2 Surgery
3.4.3 Sensing and Diagnosis
3.5 Discussion and Future Scope
4 Microfluidics in Neuroscience
4.1 Introduction
4.2 Traditional Microfluidic Devices
4.3 Current Approaches
4.3.1 Compartmentalized Microfluidics
4.3.2 Single-Cell Monitoring
4.3.3 Co-culturing
4.3.3.1 Types of co-culture systems
4.3.3.2 Blood–brain barrier
4.3.3.3 Co-culturing of neural cells
4.3.4 Integrated Microfluidic/Microelectrode Array
4.3.5 Hydrogel Gradients
4.4 Applications
4.4.1 Neuron Differentiation and Polarity
4.4.1.1 Axon guidance
4.4.1.2 Patterned substrates
4.4.2 Biochemical Gradients
4.4.3 Electrophysiological Recordings
4.4.4 Dendritic Signaling and Synapse Formation
4.4.5 Developmental Study at Cell Population/Tissue/Organ-on-a-Chip (Brain-on-a-Chip) Level
4.4.6 Neurodegenerative Studies
4.5 Future Prospects
4.6 Summary
5 Vascularized Microfluidic Organ on a Chip and Its Applications
5.1 Introduction
5.2 In vitro Vascularization Strategies
5.2.1 EC Lining–Based Methods
5.2.1.1 Microneedle-based removable method
5.2.1.2 Micropatterned planar hydrogel slab bonding method
5.2.1.3 Dissolvable material–based sacrificial micromolding method
5.2.1.4 EC lining inside a PDMS-based microfluidic channel
5.2.2 Vasculogenesis- and Angiogenesis-Based Methods
5.2.2.1 Vasculogenesis
5.2.2.2 Angiogenesis
5.2.2.3 Hybrid methods
5.3 Vascular-Inducing Factors
5.3.1 Biomechanical Factors
5.3.2 Extracellular (or Diffusible) Signaling Molecules
5.3.3 Cell Source and Cell–Cell Interaction
5.4 Selective Vascular Barrier
5.5 Application of Engineered Microvascular Networks to Cancer Biology
5.5.1 Tumor Angiogenesis
5.5.2 Tumor Intravasation
5.5.3 Tumor Extravasation
5.5.4 Tumor Microenvironment
5.5.5 Application of Vascularized Tumor on a Chip
5.5.5.1 Anticancer drug screening
5.5.5.2 Different tumor therapies
5.6 Conclusions and Future Perspectives
6 DNA Gene Microarray Biochip and Applications
6.1 Introduction
6.2 Combining Nanotechnology’s Biochips
6.3 Simulation of the Injection Performance of a Single-Channel Injection Chamber
6.4 Experiment and Results
6.5 Conclusions
7 Microneedles: Current Trends and Applications
7.1 Introduction
7.2 History of Microneedles
7.3 Mechanism of Drug Delivery via Microneedles
7.4 Types of Microneedles
7.4.1 Solid Microneedles
7.4.1.1 Solid, durable microneedles
7.4.1.2 Solid, degradable microneedles
7.4.2 Hollow Microneedles
7.4.3 Polymer Microneedles
7.4.3.1 Dissolving microneedles
7.4.3.2 Biodegradable polymers
7.4.3.3 Swellable polymers
7.5 Microneedle Material and Its Properties
7.5.1 Silicon
7.5.2 Metal
7.5.3 Ceramic
7.5.4 Silica Glass
7.5.5 Carbohydrate
7.5.6 Polymer
7.6 Microneedle Patch Design Parameters and Evaluation
7.6.1 Microneedle and Patch Geometry
7.6.2 Drug and Vaccine Stability in Microneedles
7.6.3 Mechanical Strength of Microneedles
7.6.4 Characterization of Penetration
7.6.5 In vivo Animal Model Studies
7.7 Applications of Microneedles
7.7.1 Delivery to the Skin
7.7.2 Cosmetology
7.7.3 Microneedles for Ocular Drug Delivery
7.7.4 Insulin Delivery
7.7.5 Oral and Gastrointestinal Drug Delivery
7.7.6 Protein and Vaccine Delivery
7.7.7 Miscellaneous Applications
7.8 Drawbacks of Microneedles
7.9 Future Scope
7.10 Summary
8 Microfluidic Electroporation and Applications
8.1 Introduction
8.2 Brief Overview of Electroporation
8.3 Recent Advancement in Electroporation
8.3.1 Gold Nanoparticle–Enhanced Electroporation
8.3.2 Carbon Nanotube–Based Electroporation
8.4 Recent Advancements in Single-Cell Electroporation
8.4.1 Single-Cell Trapping and Electroporation
8.4.1.1 Mechanical trap
8.4.1.2 Optical tweezer
8.4.1.3 Droplets microfluidics
8.4.1.4 Magnetic trap
8.4.2 Micro-/Nanochannel-Based Single-Cell Electroporation
8.4.3 Magnetoelectroporation
8.4.4 Optoelectronic Tweezer for Electroporation
8.4.5 Waveguide-Based Electroporation
8.4.6 Microcavity-Based Electroporation
8.4.7 Electrofusion
8.5 Applications
8.5.1 Imaging Based on Electrical Properties
8.5.2 Cell Reprogramming
8.5.3 Tissue Engineering and Regenerative Medicine
8.5.4 Intracellular Recording
8.5.5 Cancer Studies
8.5.6 Gene Transfer and DNA Vaccination
8.6 Limitations and Future Directions
8.7 Conclusions
9 Electrical Cell Lysis on Microfluidic Devices
9.1 Cell Membrane and Electrical Lysis
9.2 Mechanism of Pore Formation and Electrical Lysis
9.2.1 Theories
9.2.2 Transmembrane Potential and Pore Formation
9.2.3 Transition States and Dynamics
9.3 Microfluidic Devices for On-Chip Electrical Lysis
9.3.1 On-Chip Electrical Lysis
9.3.2 Microchannel and Electrode Geometry
9.4 Electrical Lysis Parameters and Considerations
9.4.1 PEF Parameters
9.4.2 Critical Pore Formation Time
9.4.3 Excitation Type
9.4.4 Fluidic Medium
9.4.5 Cell Line
9.5 EL-Associated Phenomena
9.5.1 Secondary Effects
9.5.2 Cellular Spin Resonance
9.5.3 Electrofusion
9.5.4 Electroinsertion
9.5.5 Electroactivation
9.6 On-Chip Electrical Lysis Applications
9.6.1 Advantages of On-Chip Electrical Lysis
9.6.2 Bioanalysis Device
9.6.3 Biofouling Treatment
9.6.4 Single-Cell Analysis
9.6.5 Cancer and Tumor Treatment
9.7 Summary
10 Microfluidics-Based Metallic Nanoparticle Synthesis and Applications
10.1 Introduction
10.1.1 Nanoparticle Formation
10.1.2 Metallic Nanomaterials
10.2 Microfluidics
10.2.1 Single-Phase Microfluidics
10.2.2 Multiphase Microfluidics
10.3 Microfluidic Devices for Metallic Nanoparticle Synthesis
10.3.1 Continuous-Flow Microfluidics
10.3.2 Segmented-Flow Microfluidics
10.3.3 Mixing Strategies in Microfluidics
10.3.4 Controlling Parameters in Metallic Nanoparticle Synthesis
10.3.5 Synthesis of Gold Nanoparticles
10.3.6 Synthesis of Silver Nanoparticles
10.3.7 Synthesis of Other Metallic Nanoparticles for Biomedical Applications
10.4 Biomedical Applications
10.4.1 Bioimaging
10.4.2 Biosensing
10.4.3 Photothermal Therapy
10.5 Future Prospects
10.6 Conclusions
11 Microfluidic Particle Separation and Biomedical Applications
11.1 Introduction
11.1.1 Theory and Mechanism
11.1.2 Flow Resistance
11.2 Materials and Methods
11.2.1 Flow Streamlines Simulation
11.2.2 Microparticle Separation Simulation
11.2.3 Microparticle Separation Technique
11.3 Results and Discussions
11.3.1 Separation of Polystyrene Microbeads
11.3.2 Separation of Polydisperse Samples
11.4 Conclusions
Index




پست ها تصادفی