توضیحاتی در مورد کتاب Microscopy Techniques for Biomedical Education and Healthcare Practice: Principles in Light, Fluorescence, Super-Resolution and Digital Microscopy, and Medical Imaging (Biomedical Visualization, 2)
نام کتاب : Microscopy Techniques for Biomedical Education and Healthcare Practice: Principles in Light, Fluorescence, Super-Resolution and Digital Microscopy, and Medical Imaging (Biomedical Visualization, 2)
ویرایش : 1st ed. 2023
عنوان ترجمه شده به فارسی : تکنیکهای میکروسکوپی برای آموزش زیستپزشکی و تمرین مراقبتهای بهداشتی: اصول نور، فلورسانس، میکروسکوپ دیجیتال با وضوح فوقالعاده، و تصویربرداری پزشکی (تجسم پزشکی، 2)
سری :
نویسندگان : Leonard Shapiro (editor)
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 235
ISBN (شابک) : 3031368495 , 9783031368493
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 12 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Acknowledgement
Contents
Editors and Contributors
Part I: Advances in Microscopy for Visualization, Education and Healthcare Practice
1: Visualizing the Invisible: Microscopy and How It Affects Our Understanding of Cells and Tissues
1.1 Introduction
1.2 Microscopy in Medical Research and Education
1.2.1 Old Textbook Knowledge Shapes our Understanding of Cellular Details
1.2.2 Finding Patterns in Biological Chaos: Histology as a Subject at Universities
1.3 Simple Microscopy and Advanced Variants
1.3.1 The Microscope-An Optical Assembly to Magnify Small Things
1.3.2 Sample Contrast Mechanisms
1.3.2.1 Brightfield, Labels, and Phase Contrast
1.3.2.2 Quantitative Phase Microscopy
1.3.2.3 Fluorescence Microscopy
Autofluorescence in Pathology
Applications of Fluorescence Microscopy in Medicine
1.3.3 Resolution and the Microscope´s Blurring Function
1.3.4 Super-Resolution Microscopy
1.3.5 3D Microscopy
1.3.5.1 Optical Sectioning
1.3.5.2 Confocal
1.3.5.3 Light-Sheet Microscopy
1.4 Data Processing
1.4.1 Visualization
1.4.1.1 Grayscale and Color Images
1.4.1.2 Volumetric and Video Microscopy Images
1.4.2 Quantification
1.4.3 Machine Learning in Pathology
1.5 Synthesizing Microscopy, Visual Representation, and Learning
1.5.1 The Importance of Visualizations for Learning and Understanding
1.5.2 Seeing What we Want to See: Motivated Perception and the Downsides of Expertise
References
2: Morphometric Image Analysis and its Applications in Biomedicine Using Different Microscopy Modes
2.1 Background
2.2 Microscopic Imaging, Morphometry, and Quantification of the Results
2.2.1 3D Confocal Cell Morphometry
2.2.2 Electron Microscopy Morphometry
2.3 Applications of Morphometrical Analysis in Biomedicine
2.3.1 Morphometric Image Analysis in Tumor Researches and Diagnostics
2.3.2 Morphometric Analysis in Brain Research
2.3.3 Morphometric Analysis in Immunohistochemical Investigations
2.4 Essential Requirements for Precise and Reproducible Morphometric Analysis of Microscopic Images
2.5 Future Perspectives
References
3: The Shift in Power from Conventional to Digital and Virtual Microscopy
3.1 Conventional Optical Microscopy and its Shortfalls
3.2 The Use of Microscopes in Teaching and Learning
3.3 Limitations of Microscopes in Teaching and Learning
3.4 Challenges in Teaching and Learning of Microscopy and Histology
3.5 Reflection on Teaching Histology
3.6 Virtual and Digital Microscopy
3.7 Teaching and Learning Using a Virtual Online Platform-Experience at our Laboratory Setting
3.8 Creation of Digitized Database
3.9 Remodelling of Laboratory and Lecture Venues to Accommodate Virtual Platform
3.10 Delivering Histology Practical Sessions
3.11 Assessments, Tutorials and Correspondence
3.12 Impact of COVID-19 on Histology Practical Teaching
3.13 Digital and Virtual Microscopy as a Research Tool
3.14 Conclusion
3.15 Limitations of Digital and Virtual Microscopy
References
4: How Visualizations Have Revolutionized Taxonomy: From Macroscopic, to Microscopic, to Genetic
4.1 Introduction
4.2 The Macroscopic: What Is Visible with the Naked Eye
4.2.1 The Aristotelian System
4.2.2 The Linnaean System
4.2.2.1 Linnaeus and Binomial Nomenclature
4.2.2.2 How Linnean Classification Visualizes Organisms?
4.3 The Microscopic
4.3.1 How Many Species Are There?
4.3.2 The Invention of the Microscope
4.3.3 The Uses of Microscopy
4.3.3.1 Early Microscopy and Taxonomy
4.3.3.2 The Development of Microscopy
4.3.3.3 Modern Microscopy and Taxonomy
4.4 Genetics
4.4.1 A Brief Introduction to Genetics
4.4.2 Evolutionary Biology and Taxonomy
4.4.3 What Genetics Reveals about Taxonomy: Divergence and Convergence
4.4.4 How we Visualize Genetics?
4.5 Conclusions
References
5: Bright New World: Principles of Fluorescence and Applications in Spectroscopy and Microscopy
5.1 Introduction
5.2 Historical Context
5.3 Characteristics of Fluorescence Excitation and Emission
5.3.1 Photophysical Processes
5.3.2 Characterizing Fluorophores
5.3.3 Fluorescence Quenching
5.3.4 Fluorescence Resonance Energy Transfer
5.3.5 The ``Dark Side´´ of Fluorescence
5.4 Spectrofluorimetry
5.5 Fluorescence Microscopy
5.5.1 Widefield Microscopy
5.5.2 Confocal Microscopy
5.5.3 The Diffraction Limit and the Advent of Super-Resolution Microscopy
5.6 Fluorescent Reporters
5.7 Image Analysis
5.8 Conclusion
References
6: An Introduction to Particle Tracking Techniques with Applications in Biomedical Research
6.1 Introduction
6.2 Conceptualizing a Particle in Biological and Virtual Realms
6.3 Principles of Particle Tracking
6.4 Methodological Considerations
6.5 Software Packages
6.6 Overview of the Data Derived from Particle Tracking
6.7 Some Interesting Applications of Particle Tracking in Biomedical Systems
6.7.1 Designing Mucopermeative NPs for Drug Delivery
6.7.2 Cellular Microrheology and Biomechanics
6.7.3 Understanding the Dynamics of Biomembranes
6.7.4 Mechanistic Investigations on Intracellular and Intercellular Transport
6.7.5 Mechanistic Investigations on Cellular Uptake
6.8 Future Perspectives
References
7: An Exploration of the Practice of CT Modalities to Evaluate Anterior Cranial Deformities in Craniosynostosis
7.1 Introduction
7.2 Anatomy of the Infant Skull
7.2.1 Gross Anatomy
7.2.2 Embryogenesis
7.3 What Is Craniosynostosis?
7.3.1 Scaphocephaly
7.3.2 Trigonocephaly
7.3.3 Anterior Plagiocephaly
7.4 Imaging Modalities Used in the Evaluation of Craniosynostosis
7.4.1 Plain Skull Radiography and Bone Scintigraphy
7.4.2 Computed Tomography
7.4.3 Magnetic Resonance Imaging and Sonography
7.5 A Novel Approach to Analyze ACF Morphometry in Craniosynostosis
7.5.1 Patients
7.5.2 Inclusion and Exclusion Criteria
7.5.2.1 Inclusion Criteria
7.5.2.2 Exclusion Criteria
7.5.3 Sample Size
7.5.4 Ethical Considerations
7.5.5 Image Acquisition
7.5.6 Image Analysis
7.5.7 Current Approach to Analyzing ACF Morphometry in the Craniosynostoses
7.5.7.1 Scaphocephaly
7.5.7.2 Trigonocephaly
7.5.7.3 Anterior Plagiocephaly
7.5.8 Use of Novel Anatomical Landmarks to Analyze ACF Morphometry in the Craniosynostoses
7.5.8.1 ACF Length and Width in Scaphocephaly
7.5.8.2 ACF Length and Width in Trigonocephaly
7.5.8.3 ACF Length and Width in AP
7.5.9 Statistical Data Analysis
7.6 A New and Improved Approach to ACF Morphometry
7.6.1 ACF Morphometry in Scaphocephaly
7.6.2 ACF Morphometry in Trigonocephaly
7.6.3 ACF Morphometry in AP
7.7 Limitations
7.8 Recommendations
7.9 Conclusion
References
Part II: Anatomical and Cell Biology Education
8: The Use of Biomedical Imaging in Visuospatial Teaching of Anatomy
8.1 Introduction
8.2 History of Traditional Anatomical Teaching Techniques
8.3 Modernisation of Anatomical Teaching
8.4 The Benefits of Incorporating Biomedical Technology in Teaching Anatomy
8.5 Three-Dimensional Printing
8.5.1 Three-Dimensional Modelling Software
8.5.1.1 Incorporation of 3Dp in a Lecture Series
8.6 MacroView
8.6.1 Role of MacroView in Lecture Series
8.7 Ultrasound
8.7.1 Echogenicity
8.7.2 Transducers
8.7.2.1 Curvilinear Transducer
8.7.2.2 Linear Transducer
8.7.2.3 Phased Array Transducer
8.7.3 Frequency and Resolution
8.7.4 Knobology
8.7.4.1 Basic Ultrasound Modes
8.7.4.2 Incorporation of Ultrasound in Lecture Series
8.8 Anatomage Table 8
8.8.1 Gross Anatomy Folder
8.8.2 Assessments
8.8.2.1 Incorporation of Anatomage in Lecture Series
8.9 Pilot Study
8.9.1 Material and Methods
8.10 Results and Outcomes
8.11 Discussion
8.12 Conclusion
References
9: Ultrasound Imaging for Musculoskeletal Research
9.1 Introduction
9.1.1 History of Musculoskeletal US
9.1.2 The Role of US in Musculoskeletal Applications
9.1.3 Advantages and Limitations of Using US for Diagnostic Purposes in Musculoskeletal Injuries
9.2 Types of Transducers for Musculoskeletal Imaging
9.3 US Imaging for Seated Anatomy
9.3.1 The Role of US in the Early Detection of Pressure Ulcers
9.3.1.1 US Imaging of the Ischial Tuberosity
9.4 Recent US Imaging Advances
9.5 Conclusion
References
10: Skill Acquisition in Histology Education
10.1 Introduction
10.1.1 Traditional Histology Education
10.1.2 Action Research
10.1.3 Teaching in the Context of Medicine
10.1.4 Ensuring Quality and Rigour in AR
10.2 Aims for the Research Project
10.3 Project Overview
10.4 Methods
10.4.1 Ethics
10.4.2 Methods Overview
10.4.3 Creation of the Resources
10.4.4 Data Collection
10.4.4.1 Questionnaires
10.4.4.2 Field Notes
10.4.4.3 Quiz and Assessment Results
10.4.5 Control Groups
10.4.6 Ethical Considerations
10.5 Cycle Overview
10.5.1 Pre-Cycle
10.5.2 Cycle 1: Use of a Decision Tree in the Practical Setting
10.5.2.1 Cycle 1 Outline
10.5.2.2 Cycle 1 Logistics
10.5.2.3 Cycle 1 Field Notes
10.5.2.4 Cycle 1 Questionnaire Data
10.5.2.5 Cycle 1 Discussion
10.5.2.6 Cycle 1 Reflections for Implementation in Cycle 2 (Table 10.1)
10.5.3 Cycle 2: Use of the Decision Tree in a Digital Format
10.5.3.1 Cycle 2 Outline
10.5.3.2 Cycle 2 Logistics
10.5.3.3 Cycle 2 Field Notes
10.5.3.4 Cycle 2 Questionnaire Data
10.5.3.5 Quiz and Worked Example Results
10.5.3.6 Cycle 2 Discussion
10.5.3.7 Cycle 2 Reflections for Implementation in Cycle 2.5 (Table 10.2)
10.5.4 Cycle 2.5: Modification of the Digitally Available Resources
10.5.4.1 Cycle 2.5 Outline
10.5.4.2 Cycle 2.5 Logistics
10.5.4.3 Cycle 2.5 Field Notes
10.5.4.4 Cycle 2.5 Questionnaire Data
10.5.4.5 Quiz and Worked Example Results
10.5.4.6 Cycle 2.5 Discussion
10.5.5 Post-cycle
10.5.5.1 Quiz and Worked Example Results
10.5.5.2 Summative Practical Exam (OSSE) Results and Field Notes
10.5.5.3 Post-cycle Discussion
10.6 Was This Project Successful?
10.6.1 The Data Can Be Generalised
10.6.2 The Data Are Reliable
10.6.3 The Results and Conclusions Are Objective
10.6.4 The Results and Conclusions Are Valid
10.6.4.1 Generation of New Knowledge
10.6.4.2 Achievement of Action-Oriented Outcomes
10.6.4.3 Education of Researcher and Participants
10.6.4.4 Results Are Relevant to the Local Setting
10.6.4.5 Sound and Appropriate Research Methodology
10.6.5 The Project Was Ethically Conducted
10.6.6 The Results Are Repeatable
10.6.7 Summary: This Was a Successful Project
10.7 Overall Discussion and Conclusions
10.7.1 Skill Development
10.7.2 Formative Assessment and Feedback
10.8 Future Plans
References