Modeling and Simulation Based Systems Engineering: Theory and Practice

دانلود کتاب Modeling and Simulation Based Systems Engineering: Theory and Practice

60000 تومان موجود

کتاب مهندسی سیستم های مبتنی بر مدل سازی و شبیه سازی: تئوری و عمل نسخه زبان اصلی

دانلود کتاب مهندسی سیستم های مبتنی بر مدل سازی و شبیه سازی: تئوری و عمل بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 3


توضیحاتی در مورد کتاب Modeling and Simulation Based Systems Engineering: Theory and Practice

نام کتاب : Modeling and Simulation Based Systems Engineering: Theory and Practice
عنوان ترجمه شده به فارسی : مهندسی سیستم های مبتنی بر مدل سازی و شبیه سازی: تئوری و عمل
سری :
نویسندگان : ,
ناشر : World Scientific
سال نشر : 2023
تعداد صفحات : 269 [270]
ISBN (شابک) : 9811260176 , 9789811260179
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 34 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Contents Preface Chapter 1. Introduction References Chapter 2. Using modeling and simulation and artificial intelligence to improve complex adaptive systems engineering 1. Introduction 2. The Changing Landscape of Systems 3. The Changing Landscape of Systems Engineering 4. Complexity Science, AI, and M&S Methods to Address the New Challenges 4.1. Complexity science 4.1.1. Complexity science definitions 4.1.2. The rise of complex systems 4.1.3. Emergence and collective behavior 4.2. Artificial intelligence 4.2.1. Combinational, exploratory, and transformational creativity 4.2.2. Evaluation 4.3. Modeling and simulation 5. Bringing Designing, Architecting, and Operating Together 5.1. A new systems engineering approach 5.2. Examples 6. Conclusion and Discussion References Chapter 3. DEVS and MBSE: A review 1. Introduction 2. Review of DEVS in the MBSE Context 2.1. DEVS formalism 2.2. M&S environment background 2.3. Hierarchy of system specifications 2.4. DEVS simulation protocol 2.5. Timeline history of some key DEVS developments 3. Homomorphic Implementation of DEVS-Like Systems 3.1. Hierarchy of system specification morphisms 3.2. Application to the design of simulation systems for “as-is” software 4. DEVS-Based M&S Capabilities and Tools for MBSE 4.1. Mapping activity diagrams into executable activity-based DEVS models 4.2. DEVS top-to-bottom MBSE capability 5. Summary and Conclusions References Chapter 4. XDEVS: A hybrid system modeling framework 1. Introduction 2. XDEVS Specification 2.1. DEVS 2.2. XDEVS 3. Simulation of XDEVS Models 3.1. Simulation of DEVS models 3.2. Simulation engine for XDEVS 4. Case Study 4.1. Model description 4.2. XDEVS simulation result 4.3. Specification comparison 5. Conclusions Acknowledgment References Chapter 5. An integrated intelligent modeling and simulation language for model-based systems engineering 1. Introduction 2. Related Work 2.1. System modeling language 2.2. Physical property modeling language 2.3. Intelligent extension of modeling languages 2.4. Integration of system modeling and simulation 3. Overall Structure of X Language 4. Essential Elements and Grammatical Structure of X Language 4.1. Continuous class 4.2. Discrete class 4.3. Couple class 4.4. Agent class 4.5. Requirement class 4.6. Record class 4.7. Function class 4.8. Connector class 5. Compiler and Simulation Engine 6. Case Study 7. Conclusion Acknowledgments Appendix References Chapter 6. Modeling for heterogeneous objects based on X language: A modeling method of algorithm-hardware 1. Introduction 2. Background 2.1. X language 2.1.1. Class of model 2.1.2. Graphical model of X language 2.1.3. Text model of X language 2.2. VHDL 3. Methodology 3.1. Modeling hardware-implemented algorithm by X language 3.1.1. Definition diagram 3.1.2. Connection diagram 3.1.3. Equation diagram 3.1.4. State machine diagram 3.2. Model conversion 3.2.1. Model templates of VHDL 3.2.2. Conversion rule 4. Case Study 4.1. Brief of Kalman filter 4.2. Modeling by X language 4.3. Generating VHDL code of Kalman filter 4.4. Verification of algorithm 5. Conclusion Acknowledgments References Chapter 7. Data-driven modeling method with reverse process 1. Introduction 2. Related Work 3. Modeling Based on Partial Least Squares (PLS) 4. Gray Relational Analysis of Characteristic Variables 5. Case Analysis 6. Conclusion Acknowledgments References Chapter 8. Simulation-oriented model reuse in cyber-physical systems: A method based on constrained directed graph 1. Introduction 2. Concepts of Model Reuse and Composition for CPS 2.1. Characteristics of model in CPS 2.2. Constrained directed graph of models 3. Metrics for Model Composition in CPS 3.1. Co-simulation distance of heterogeneous models 3.2. Reusability of model node 3.3. Initialization of constrained directed models graph 4. Model Composition Method Based on Multi-Objective Genetic Algorithm 4.1. Encoding and evolution 4.2. Generating model composition path 4.3. Complexity analysis 5. Experiment and Analysis 6. Conclusion Acknowledgments References Chapter 9. Model maturity towards modeling and simulation: Concepts, index system framework and evaluation method 1. Introduction 2. The Concept of Model Maturity 2.1. Definition 2.2. Features of model maturity compared with other metrics 2.3. Evaluation of model maturity 3. Five Levels of Model Maturity 4. Construction of the Model Maturity Index System 4.1. Principles 4.2. A framework of index system for model maturity evaluation 4.3. Further explanation of model maturity indexes 5. A HEQQ Analysis for Model Maturity 5.1. Main idea of HEQQ 5.2. Mathematical description of HEQQ 5.3. The evaluation process of model maturity based on HEQQ 5.4. Analysis for weight determining methods 5.5. Determining index weights based on entropy weight method 6. Case Study 6.1. Data acquisition 6.2. Comparative experiments 7. Conclusions and Future Work Acknowledgments References Chapter 10. FPGA-based edge computing: Task modeling for cloud-edge collaboration 1. Introduce 2. Task-Based Edge Node Collaboration Method 3. Behavior Analysis of Task 4. Task Critical Attribute Analysis 5. Task Modeling 6. Simulation Experiments 7. Conclusion Acknowledgment References Chapter 11. Hybrid intelligent modeling approach for online predicting and simulating surface temperature of HVs 1. Introduction 2. Mechanism Model for Thermal Conduction of HV 3. Hybrid Intelligent Modeling Approach for Surface Temperature of HV 3.1. Hybrid intelligent modeling strategy 3.2. CBR algorithm for thermal conductivity coefficient and specific heat capacity 3.3. SVR-based error compensation model 4. Experimental Verification 5. Conclusions Acknowledgments References Chapter 12. Knowledge-driven material design platform based on the whole-process simulation and modeling 1. Introduction 2. Multi-Scale Simulation of the Whole Hot Rolling Process 2.1. Production line simulation 2.2. Thermo-mechanical and microstructure simulation 3. Material Design Knowledge Management 4. Data-Driven Models in New Material Development 4.1. Steel grade merging model 4.2. Performance prediction model 4.3. Parameter optimization model 5. System Implementation and Case Study 6. Conclusion Acknowledgments References Chapter 13. A model validation method based on the orthogonal polynomial transformation and area metric 1. Introduction 2. Validation Method Based on Orthogonal Polynomials and Area Metric 2.1. Technology background 2.1.1. Extract coefficients through the discrete orthogonal polynomials 2.1.2. Area metric and u-pooling metric 2.2. Validation method for dynamic response 3. Example 4. Conclusion Acknowledgments References Chapter 14. A mixed reality simulation evaluation method for complex system 1. Introduction 2. Construction of Mixed Reality Cockpit Simulation Scene 3. Mixed Reality Simulation Evaluation Method 4. Simulation Evaluation Test 4.1. Accuracy test of virtual and real scene fusion 4.2. Accuracy test of virtual fusion interaction 4.3. Three human causes of simulation function test 5. Conclusion References Index




پست ها تصادفی