توضیحاتی در مورد کتاب Modelling and Design of Nanostructured Optoelectronic Devices: Solar Cells and Photodetectors
نام کتاب : Modelling and Design of Nanostructured Optoelectronic Devices: Solar Cells and Photodetectors
عنوان ترجمه شده به فارسی : مدلسازی و طراحی دستگاههای اپتوالکترونیکی نانوساختار: سلولهای خورشیدی و آشکارسازهای نوری
سری : Energy Systems in Electrical Engineering
نویسندگان : Jagdish A. Krishnaswamy, Praveen C. Ramamurthy, Gopalkrishna Hegde, Debiprosad Roy Mahapatra
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 293
ISBN (شابک) : 9811906068 , 9789811906060
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب با استفاده از نانوساختارهای الهام گرفته از زیستی و ساختارهای مواد چند مقیاسی از طریق یک رویکرد گام به گام به طراحی دستگاههای نوری برتر از نظر عملکردی نزدیک میشود. این کتاب هر دو مفاهیم نظری اساسی درگیر در درک و مدلسازی عددی دستگاههای اپتوالکترونیکی و کاربرد چنین روشهایی را در پرداختن به مشکلات پژوهشی چالش برانگیز در طراحی و ساخت اپتوالکترونیکی نانوساختار ترکیب میکند. این کتاب محتوای جامعی در زمینه مواد و مهندسی نوری ارائه میدهد و میتواند به عنوان یک ماده مرجع توسط محققان در طراحی نانوساختار نوری استفاده شود.
فهرست مطالب :
Preface
Optoelectronic Design: State of the Art and Challenges
Model-Based Design of Experiments
The Finite Element Method of Simulation
Synopsis
Contents
About the Authors
List of Figures
List of Tables
1 Introduction
1.1 Photonic Components: A Historical Perspective and Examples from Nature
1.1.1 Light Sources
1.1.2 Light Sensing Elements
1.1.3 Light Transporting Elements
1.2 Introduction to Semiconductor Optoelectronic Devices
1.2.1 Light Sources
1.2.2 Light Sensing Devices
1.2.3 Optical Interconnects
1.3 Summary
References
2 Nanomaterials in Optoelectronics
2.1 Introduction
2.2 Light Management for Improved Absorption
2.2.1 Dielectric Structures
2.2.2 Metallic Gratings
2.2.3 Metallic Nanoparticles
2.3 Hierarchical Structures in Photonics and Optoelectronics
2.4 Outlook: The Need for Numerical Design Approaches
References
3 Introduction to Photovoltaic Devices
3.1 Working Principles of Photovoltaic Devices
3.1.1 Charge Generation
3.1.2 Charge Separation
3.1.3 Charge Collection
3.2 Types of Photovoltaic Devices
3.2.1 p-n Junction Solar Cells
3.2.2 Thin-Film Solar Cells
3.3 Photovoltaic Device Performance
3.3.1 Measurements Under Broadband Excitation
3.3.2 Measurements Under Spectrally Resolved Optical Excitation
3.3.3 Parasitic Resistances
3.4 Equivalent Circuit Models of Photovoltaic Devices
3.5 Theoretical Limits to Performance and Ways to Extend These Limits
3.5.1 Optical Losses
3.5.2 Charge Carrier Losses
3.5.3 Thermal Losses
3.6 Other Operational and Environmental Factors
3.7 Summary
References
4 Introduction to Photodetectors
4.1 Types of Photodetectors and Working Principles
4.1.1 p-n Junction Photodetectors
4.1.2 p-i-n Photodetectors
4.1.3 Avalanche Photodetectors
4.2 Photodetector Performance
4.2.1 Shunt Resistance
4.2.2 Quantum Efficiency
4.2.3 Responsivity
4.2.4 Response Time
4.2.5 Bandwidth
4.2.6 Noise Characteristics
4.2.7 Spectral Uniformity
4.2.8 Linearity
4.3 Theoretical Limits to Performance and Ways to Extend These Limits
4.3.1 Optical Losses
4.3.2 Electrical Losses
4.3.3 Thermal Losses
4.4 Summary
References
5 Waves and Electromagnetics
5.1 Introduction to Waves
5.1.1 Plane Waves
5.1.2 Applicability of Plane Wave Solutions: Need for Numerical Solution Methods
5.2 Electromagnetic Waves and Maxwell’s Equations
5.2.1 Maxwell’s Equations
5.2.2 The Electromagnetic Wave Equations for General Anisotropic Media
5.2.3 Electromagnetic Waves in Isotropic Media
5.2.4 Time Harmonic Solutions in Isotropic Materials
5.2.5 Plane Waves in Isotropic Materials
5.2.6 Electromagnetic Material Properties
5.3 Boundary Conditions in Electromagnetic Simulations
5.3.1 Perfect Electric Conductor and Perfect Magnetic Conductor Boundary Conditions
5.3.2 Boundary Conditions for the Normal Components of Fields
5.3.3 Periodic Boundaries
5.3.4 Transparent Boundary Conditions
5.3.5 Input Boundaries
5.4 Poynting’s Theorem: Energy, Power, Link to Exciton Generation
5.5 Summary
References
6 The Semiclassical Charge Transport Model and Its Extension to Organic Semiconductors
6.1 Introduction
6.2 Describing Charge Transport
6.2.1 The Quantum Mechanical Approach
6.2.2 The Semiclassical Particle Approach
6.2.3 The Ensemble Semiclassical Approach
6.3 The Boltzmann Transport Equation
6.4 From the BTE to the Equations of Charge Transport
6.5 The Drift–Diffusion Model for Charge Transport
6.6 Boundary Conditions
6.6.1 Contact Boundaries
6.6.2 Non-contact Boundaries
6.6.3 The Physical Implications of Ideal Boundary Conditions
6.7 Validity of the Semiclassical Charge Transport Model
6.8 Charge Transport Modeling for Organic Photovoltaic Devices
6.9 Summary
References
7 Finite Element Modeling of Organic Photovoltaic Devices
7.1 Introduction
7.2 Modeling Approach
7.2.1 Assumptions
7.3 Device Geometry, Equations, and Boundary Conditions
7.3.1 Optical Transport Simulations
7.3.2 Charge Transport Simulations
7.4 Material Properties
7.4.1 Optical Properties: Refractive Index Spectra
7.4.2 Electronic Properties
7.5 Finite Element Model Implementation
7.6 Physical Quantities of Interest
7.6.1 Exciton Generation Rate
7.6.2 Optical Absorptance
7.6.3 Absorbed Photon Flux
7.6.4 The J-V Curve
7.7 Simulation of Optoelectronic Behavior of a Planar BHJ Solar Cell
7.7.1 Simulation Parameters
7.7.2 Mesh Convergence
7.7.3 Analysis of Results
7.8 Summary
References
8 Bio-inspired Nanostructures for Optoelectronic Enhancement in Photovoltaics
8.1 Introduction
8.2 Nanostructured Photovoltaic Design: Motivation and Preliminary Analyses
8.2.1 Why a Nanostructured Substrate?
8.3 Bio-inspired Nanostructured Design for OPVs
8.3.1 Device Architectures
8.3.2 Morphological Characteristics of the Monolithic Nanostructured Substrates
8.3.3 Optical Characteristics of the Molded Nanostructured Substrates
8.3.4 Design Rules for Enhanced Optoelectronic Performance
8.3.5 Experimental Validation of Optoelectronic Performance
8.3.6 Enhancement Mechanisms
8.4 Summary
References
9 Hierarchical Structures and Multiscale Optical Design: Unconventional Modes of Confined Optical Transport for Better Photodetectors
9.1 Introduction
9.2 Hierarchically Structured Materials
9.2.1 General Overview
9.2.2 Hierarchical Structures in Photonics and Optoelectronics
9.3 Defective Nanoscale Arrays with Microscale Discontinuities
9.4 Optoelectronic Spectral Shaping Using Multiscale Hierarchical Structures
9.4.1 Motivation
9.4.2 Nanostructured and Hierarchically Structured Waveguide Substrates: Multiscale Optical Coupling for Better Spectral Uniformity
9.4.3 Multiscale Optical Transport: Strain-Assisted Fabrication, Optical Measurements, and Optoelectronic Spectral Measurements
9.5 Summary
References
10 Summary and Concluding Remarks
Appendix A Understanding Perfectly Matched Layers
Reference
Appendix B Fabrication Procedure: Planar and Nanostructured Molded Transparent Substrates and Organic Photovoltaic Devices
B.1 Fabrication of Molded Nanostructured Substrates
B.2 Fabrication of Organic Photovoltaic Devices on the Epoxy Substrates
Reference
توضیحاتی در مورد کتاب به زبان اصلی :
This book approaches the design of functionally superior optoelectronic devices through the use of bio-inspired nanostructures and multiscale material structures through a step-by-step approach. The book combines both the fundamental theoretical concepts involved in understanding and numerically modelling optoelectronic devices and the application of such methods in addressing challenging research problems in nanostructured optoelectronic design and fabrication. The book offers comprehensive content in optoelectronic materials and engineering and can be used as a reference material by researchers in nanostructured optoelectronic design.