Modern Optics

دانلود کتاب Modern Optics

43000 تومان موجود

کتاب نوری مدرن نسخه زبان اصلی

دانلود کتاب نوری مدرن بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 10


توضیحاتی در مورد کتاب Modern Optics

نام کتاب : Modern Optics
ویرایش : 2
عنوان ترجمه شده به فارسی : نوری مدرن
سری :
نویسندگان :
ناشر : Oxford University Press, USA
سال نشر : 2015
تعداد صفحات : 737
ISBN (شابک) : 0198738773 , 9780198738770
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 70 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Preface
Contents
1 Wave Theory
1.1 Introduction
1.2 Traveling Waves
1.3 Wave Equation
1.4 Transmission of Energy
1.5 Three Dimensions
1.6 Attenuation of Waves
1.7 Summary
1.8 Problems
2 Electromagnetic Theory
2.1 Introduction
2.2 Maxwell\'s Equations
2.2.1 Gauss\'s Law
2.2.1.1 Gauss\'s (Coulomb\'s) Law for the Electric Field
2.2.1.2 Gauss\'s Law for the Magnetic Field
2.2.2 Faraday\'s Law
2.2.3 Ampére\'s Law (Law of Biot and Savart)
2.2.4 Constitutive Relations
2.3 Free Space
2.4 Wave Equation
2.5 Transverse Waves
2.6 Interdependence of E and B
2.7 Energy Density and Flow
2.8 Polarization
2.8.1 Polarization Ellipse
2.8.1.1 Linear Polarization
2.8.1.2 Circular Polarization
2.8.2 Stokes Parameters
2.8.3 Jones Vector
2.9 Propagation in a Conducting Medium
2.10 Summary
2.11 Problems
References
Appendix 2A: Vectors
2A.1 Products
2A.2 Derivatives
Appendix 2B: Electromagnetic Units
3 Reflection and Refraction
3.1 Introduction
3.2 Reflection and Transmission at a Discontinuity
3.3 Laws of Reflection and Refraction
3.4 Fresnel\'s Formula
3.4.1 σ Case (Perpendicular Polarization)
3.4.2 π Case (Parallel Polarization)
3.5 Reflected and Transmitted Energy
3.6 Normal Incidence
3.7 Polarization by Reflection
3.8 Total Reflection
3.9 Reflection from a Conductor
3.10 Summary
3.11 Problems
References
4 Interference
4.1 Introduction
4.2 Addition of Waves
4.2.1 Trigonometric Approach
4.2.2 Complex Approach
4.2.3 Vector Approach
4.3 Interference
4.4 Young\'s Interference
4.5 Dielectric Layer
4.5.1 Fizeau Fringes
4.5.2 Color Fringes
4.5.3 Haidinger\'s Fringes
4.5.4 Antireflection coating
4.5.5 Newton\'s Rings
4.6 Michelson Interferometer
4.7 Interference by Multiple Reflection
4.7.1 Fabry–Perot Interferometer
4.8 Summary
4.9 Problems
References
Appendix 4A: Multilayer Dielectric Coatings
4A.1 Vector Approach
4A.2 Matrix Approach
5 Geometrical Optics
5.1 Introduction
5.2 Eikonal Equation
5.3 Fermat\'s Principle
5.4 Applications of Fermat\'s Principle
5.4.1 Law of Reflection
5.4.2 Law of Refraction
5.4.3 Propagation through an Optical System
5.5 Lens Design and Matrix Algebra
5.6 Geometrical Optics of Resonators
5.7 Guided Waves
5.7.1 End Coupling
5.7.2 Guided Modes
5.7.3 Propagation Vector Formalism
5.7.4 Solution for Asymmetric Guide
5.7.5 Solution for Symmetric Guide
5.7.6 Cutoff Condition
5.7.7 Coupling into Guided Wave Modes
5.7.7.1 Fiber Coupling
5.7.7.2 Evanescent Wave Coupling
5.8 Lagrangian Formulation of Optics
5.8.1 Hamilton\'s Principle
5.8.2 Rectilinear Propagation
5.8.3 Law of Refraction
5.9 Propagation in a Graded-Index Optical Fiber
5.10 Summary
5.11 Problems
References
Appendix 5A: The ABCD Matrix
5A.1 Thin-Lens Equation
5A.2 Optical Invariant
5A.3 Lensmaker\'s Equation
5A.4 Gaussian Formalism
5A.5 Newtonian Formalism
5A.6 Principal Planes
5A.6.1 Nodal Points
5A.7 Aperture Stop and Pupil
Appendix 5B: Aberrations
5B.1 Wavefront Aberration Coefficients
5B.1.1 Optical Path Difference
5B.1.2 Transverse Ray Coefficients
5B.2 Spherical Aberrations
5B.2.1 Ray Intercept Plot
5B.3 Coma
5B.3.1 Optical Sine Theorem
5B.3.2 Spot Diagram
5B.4 Astigmatism
5B.5 Field Curvature
5B.6 Distortion
5B.7 Aberration Reduction
5B.7.1 Coddington Shape Factor
5B.7.2 Coddington Position Factor
6 Fourier Analysis
6.1 Introduction
6.2 Fourier Series
6.2.1 DC Term
6.2.2 Cosine Series
6.2.3 Sine Series
6.2.4 Even and Odd Functions
6.2.5 Exponential Representation
6.3 Periodic Square Wave
6.4 The Fourier Integral
6.4.1 Dirichlet Conditions
6.4.2 Evaluation of the Fourier Transform
6.5 Rectangular Pulse
6.6 Pulse Modulation Wave Trains
6.7 Dirac Delta Function
6.8 Replication and Sampling
6.9 Correlation
6.10 Convolution Integrals
6.11 Linear System Theory
6.12 Fourier Transforms in Two Dimensions
6.13 Summary
6.14 Problems
References
Appendix 6A: Fourier Transform Properties
6A.1 Linearity
6A.2 Scaling
6A.3 Shifting
6A.4 Conjugation
6A.5 Differentiation
6A.6 Convolution
6A.7 Parseval\'s Theorem
6A.8 Correlation
6A.9 Common Fourier Transform Pairs
6A.10 Convolution Properties
7 Dispersion
7.1 Introduction
7.2 Stiff Strings
7.3 Group Velocity
7.4 Dispersion of Guided Waves
7.5 Material Dispersion
7.5.1 Conductive Gas
7.5.1.1 Plasma Frequency
7.5.2 Molecular Gas
7.5.3 Dense Dielectric
7.5.4 Metals
7.6 Plasmons and Polaritons
7.7 Lorenz–Lorentz Law
7.8 Signal Velocity, Superluminal Propagation
7.9 Summary
7.10 Problems
References
Appendix 7A: Chromatic Aberrations
8 Coherence
8.1 Introduction
8.2 Photoelectric Mixing
8.3 Interference Spectroscopy
8.4 Fourier Transform Spectroscopy
8.4.1 Gaussian Spectral Distribution
8.5 Fringe Contrast and Coherence
8.6 Temporal Coherence Time
8.7 Autocorrelation Function
8.8 Spatial Coherence
8.8.1 A Line Source
8.8.2 van Cittert–Zernike Theorem
8.9 Spatial Coherence Length
8.10 Stellar Interferometer
8.11 Intensity Interferometry
8.12 Summary
8.13 Problems
References
9 Diffraction and Gaussian Beams
9.1 Introduction
9.2 Huygens\' Principle
9.2.1 Rectilinear Propagation
9.2.2 Law of Reflection
9.2.3 Snell\'s Law
9.3 Fresnel Formulation
9.4 The Obliquity Factor
9.4.1 Approximate Solutions of the Huygens–Fresnel integral
9.5 Gaussian Beams
9.6 Higher-Order Gaussian Modes and Bessel Beams
9.6.1 Hermite–Gaussian Waves
9.6.2 Laguerre–Gaussian Waves
9.6.3 Bessel Beams
9.7 Beam Propagation
9.7.1 The ABCD Law
9.7.2 Thin Lens
9.7.3 Fabry–Perot Resonator
9.7.4 Laser Cavity
9.8 Summary
9.9 Problems
References
Appendix 9A: Fresnel–Kirchhoff Diffraction
Appendix 9B: Rayleigh–Sommerfeld Formula
10 Fraunhofer Diffraction
10.1 Introduction
10.2 Fraunhofer Diffraction
10.3 Fourier Transforms via a Lens
10.4 Plane Wave Representation
10.5 Diffraction by a Rectangular Aperture
10.6 Diffraction by a Circular Aperture
10.7 Array Theorem
10.8 N Rectangular Slits
10.8.1 Young\'s Double Slit
10.8.2 The Diffraction Grating
10.9 Summary
10.10 Problems
References
Appendix 10A: Abbe Theory and Optical Processing
10A.1 Introduction
10A.2 Abbe\'s Theory of Imaging
10A.3 Amplitude Spatial Filtering
10A.4 Apodization
10A.5 Phase Filtering
10A.6 Phase and Amplitude Filter
Appendix 10B: Imaging
10B.1 Introduction
10B.2 Incoherent Imaging
10B.2.1 Resolution Criteria
10B.2.2 Optical Transfer Function
10B.2.3 Modulation Transfer Function
10B.3 Coherent Imaging
10B.4 Computational Imaging
11 Fresnel Diffraction
11.1 Introduction
11.2 Fresnel Approximation
11.3 Rectangular Apertures
11.4 Fresnel Zones
11.4.1 Incident Plane Wave
11.5 Circular Aperture
11.5.1 Intensity near the Aperture
11.5.2 Off-Axis Intensity
11.6 Opaque Screen
11.7 Zone Plate
11.8 Pinhole Camera
11.9 Fermat\'s Principle
11.10 Comparison of Techniques
11.11 Summary
11.12 Problems
References
Appendix 11A: Babinet\'s Principle
11A.1 Fraunhofer Diffraction
11A.2 Fresnel Diffraction
Appendix 11B: Fresnel Integral Solutions
11B.1 Table of Fresnel Integrals
11B.2 Cornu Spiral
12 Periodic Index of Refraction
12.1 Introduction
12.2 Holography
12.3 Holographic Recording
12.4 Off-Axis Holography
12.4.1 Recording
12.4.2 Development
12.4.3 Reconstruction
12.5 Spatial Spectrum of Off-Axis Holograms
12.6 Classification of Holograms
12.7 Diffraction Efficiency
12.8 Holography and Zone Plates
12.9 Resolution Requirements
12.10 Coherence Requirements
12.10.1 Temporal Coherence
12.10.2 Spatial Coherence
12.11 Photonic Crystals
12.11.1 Maxwell\'s Equations for Sinusoidal ε
12.12 The Bloch (or Floquet) Theorem
12.13 Multilayer Photonic Crystal
12.13.1 Photonic Crystal Defect
12.14 Numerical Techniques
12.15 Two-Dimensional Periodic Structure
12.16 Three-Dimensional Periodic Structure
12.17 Fabrication Defects
12.18 Natural Photonic Crystals
12.19 Summary
12.20 Problems
References
Appendix 12A: Phase Holograms
Appendix 12B: VanderLugt Filter
13 Anisotropy
13.1 Introduction
13.2 Dichroic Polarizers
13.2.1 Crystals
13.2.2 Wire Grids
13.2.3 Polaroid Sheet
13.3 Reflection Polarizers
13.3.1 Brewster\'s Angle Polarizers
13.3.2 Interference Polarizers
13.4 Polarization by Birefringence
13.5 Optical Indicatrix
13.6 Fresnel\'s Equation
13.6.1 Transverse Waves
13.6.2 Interdependence of D and H
13.6.3 Fresnel\'s Equation
13.7 Retarder
13.7.1 Quarter-Wave Plate
13.7.2 Compensator
13.7.3 Rhomb
13.8 Mueller Calculus
13.9 Jones Calculus
13.10 Optical Activity
13.11 Summary
13.12 Problems
References
Appendix 13A: Tensors
13A.1 Scalars
13A.2 Vectors
13A.3 Second-Rank Tensors
13A.4 Higher-Rank Tensors
13A.5 Coordinate Transformations
13A.6 Geometrical Representation
13A.7 Crystal Symmetry
Appendix 13B: Poynting Vector in an Anisotropic Dielectric
13B.1 Ray Ellipsoid
Appendix 13C: Normal Surfaces
13C.1 Biaxial Crystal
13C.2 Uniaxial Crystal
13C.3 Refraction in Crystals
Appendix 13D: Ray Surfaces
14 Optical Modulation
14.1 Introduction
14.2 Electro-optic Effect
14.3 Electro-optic Indicatrix
14.3.1 Pockels Effect
14.3.2 Kerr Effect
14.4 Amplitude Modulation
14.4.1 Kerr Modulation
14.4.2 Pockels Modulation
14.5 Modulator Design
14.5.1 Kerr Modulator
14.5.2 Pockels Modulator
14.5.3 Longitudinal Modulator
14.5.4 Transverse Modulator
14.6 Magneto-optic Effect
14.6.1 Cotton–Mouton and Voigt Effects
14.7 Photoelastic Effect
14.8 Acousto-optics
14.8.1 Bragg Scattering
14.8.2 Raman–Nath Scattering
14.8.3 Acousto-optic Modulator
14.8.4 Spectrum Analyzer
14.8.5 Acousto-optic Beam Deflector
14.9 Summary
14.10 Problems
References
Appendix 14A: Pockels and Kerr Tensors
Appendix 14B: Phenomenological Acousto-optic Theory
14B.1 Bragg Region
14B.2 Raman–Nath Region
Appendix 14C: Acoustic Figure of Merit
15 Nonlinear Optics
15.1 Introduction
15.2 Nonlinear Polarization
15.3 Nonlinear Optical Coefficient
15.4 Symmetry Properties
15.5 Wave Propagation in a Nonlinear Medium
15.6 Conservation of Energy
15.6.1 Manley–Rowe Relation
15.7 Conservation of Momentum
15.7.1 Poynting Vector
15.7.2 Phase Matching
15.8 Second-Harmonic Generation
15.9 Methods of Phase Matching
15.9.1 Quasi-Phase Matching (QPM)
15.9.2 Total Internal Reflection
15.9.3 Dielectric Waveguide
15.9.4 Noncollinear Phase Matching
15.9.5 Birefringent Phase Matching
15.10 Phase Conjugation
15.11 Summary
15.12 Problems
References
Appendix 15A: Nonlinear Optical Medium
15A.1 Introduction
15A.2 Generalized Linear Theory
15A.3 Nonlinear Equation of Motion
15A.4 Perturbation Technique
15A.5 Second-Order Nonlinearity
Appendix 15B: Miller\'s Rule
Appendix 15C: Nonlinear Polarization in the 32 Point Group
Index




پست ها تصادفی