توضیحاتی در مورد کتاب :
گزارشی به روز از مواد پرانرژی نوآورانه و کاربردهای بالقوه آنها در رانش فضایی و مواد منفجره قوی ارائه می دهد.
اکثر مواد منفجره و پیشرانه ها در حال حاضر از تعداد کمی از مواد مانند TNT و نیتروسلولز استفاده می کنند. در مقایسه با مواد معمولی، مواد پرانرژی در مقیاس نانو و میکرو ویژگیهای سوزاندن عالی و چگالی انرژی و بازده انفجاری بسیار بالاتری از خود نشان میدهند. مواد پرانرژی در مقیاس نانو و میکرو: پیشرانهها و مواد منفجره یک مرور کلی به موقع از مواد انرژیزا در مقیاس نانو (nEMs) و فناوری مواد انرژیزا در مقیاس میکرو (µEMs) ارائه میدهند.
این جلد جامع با پوشش مواد تشکیل دهنده nEM و μEMs و همچنین فرمولاسیون، آماده سازی، خصوصیات، احتراق، احتراق و عملکرد مواد پر انرژی را در کاربردهای مختلف پیشران ها و مواد منفجره بررسی می کند. بیست و دو فصل به بررسی نانوکامپوزیتهای پیروتکنیک مبتنی بر فلز، پیشرانه موشکهای جامد و هیبریدی، سوختهای جامد در فضا و قدرت، حساسیت و خواص مکانیکی مواد منفجره، مواد پرانرژی جدید و موارد دیگر میپردازد.
مواد پرانرژی جدید و پتانسیل آنها برای استفاده در پیشرانه ها و مواد منفجره را بررسی می کند
آخرین پیشرفتهای گروههای تحقیقاتی پیشرو که در حال حاضر در دوازده کشور فعال هستند را خلاصه میکند
بحث می کند که چگونه مواد جدید سازگار با محیط زیست و پرانرژی می توانند به بهترین شکل در کاربردهای مختلف استفاده شوند.
اصول مواد پرانرژی، از جمله شباهت ها و تفاوت های بین پیشرانه های کامپوزیت و مواد منفجره را توضیح می دهد.
مواد پرانرژی در مقیاس نانو و میکرو: پیشرانه ها و مواد منفجره منبع مهمی برای دانشمندان مواد، متخصصان مواد منفجره، پیروتکنسین ها، شیمیدانان محیط زیست، شیمیدانان پلیمر، شیمیدانان فیزیک، پزشکان هوافضا و مهندسان هوافضا است که هم در دانشگاه و هم در صنعت کار می کنند.
فهرست مطالب :
Cover
Half Title
Nano and Micro-Scale Energetic Materials: Propellants and Explosives. Volume 1
Nano and Micro-Scale Energetic Materials: Propellants and Explosives. Volume 2
Copyright
Contents
Volume 1
Volume 2
Preface
About the Editors
Volume 1
Part I. Fundamentals
1. Composite Heterogeneous Energetic Materials: Propellants and Explosives, Similar but Different?
1.1 Introduction
1.2 Structure and Composition
1.2.1 Energetic Fillers
1.2.2 Binder Systems
1.2.2.1 Binder Systems for Cast Cure Propellants and Explosives
1.2.2.2 Pressed PBXs
1.2.2.3 Plasticizers
1.2.3 Surface Active Materials (SAMs)
1.3 Performance
1.4 Sensitivity
1.4.1 Sensitivity Correlations
1.4.2 Transfer to Detonation in Propellants and PBXs
1.4.2.1 Factors Determining Transfer to Detonation
1.4.2.2 DDT Description
1.5 Summary
List of Abbreviations
References
2. High-Pressure Combustion Studies of Energetic Materials
2.1 Introduction
2.2 Burning Rates as a Function of Pressure
2.3 Visual Observations of Burning Behavior as a Function of Pressure
2.5 Conclusions
Acknowledgments
References
Part II. New Energetic Ingredients
3. Cyclic Nitramines as Nanoenergetic Organic Materials
3.1 Introduction
3.2 Nanosized RDX
3.3 Nanosized HMX
3.4 Nanosized CL-20
3.4.1 Ultrasound- and Spray-Assisted Precipitation of Ultrafine CL-20
3.4.2 Preparation of CL-20 Nanoparticles Via Oil in Water Microemulsions
3.4.3 Production of Nanoscale CL-20 Using Ultrasonic Spray-Assisted Electrostatic Adsorption Method (USEA)
3.4.4 Preparation of Nano CL-20 Via Sonocrystallization
3.4.5 Preparation of Micro-Sized Particles and their Comparison with Nanoscale CL-20
3.4.6 Method for Production of Nano CL-20 in Supercritical CO2 and 1,1,1,2-Tetrafluoroethane (TFE)
3.4.7 Creation of Nano CL-20 Particles by the Method of Bidirectional Rotary Mill
3.4.8 Electrospray of CL-20 Particles
3.4.9 Production of Sub-Micro CL-20-Based Energetic Polymer Composite Ink
3.4.10 Nanoscale Composites Based on CL-20
3.4.11 Comparison of the Detonation Performance of Micro−/Nanoscale High-Energy Materials
3.4.12 Preparation of Nano-Sized CL-20/NQ Co-Crystal Via Vacuum Freeze Drying
3.4.13 Nanoscale 2CL-20⋅HMX High Explosive Cocrystal Synthesized by Bead Milling
3.4.14 Mechanochemical Fabrication and Properties of CL-20/RDX Nano Co/Mixed Crystals
3.4.15 Preparation of Nano CL-20/HMX Cocrystal by Milling Method
3.4.16 Synthesis of Nano CL-20/HMX Co-Crystals by Ultrasonic Spray-Assisted Electrostatic Adsorption Method
3.4.17 Preparation of Nano-CL-20/TNT Cocrystal Explosives by Mechanical Ball-Milling Method
3.4.18 Preparation of Nanoscale CL-20/Graphene Oxide by One-Step Ball Milling
3.4.19 Preparation and Properties of CL-20 Based Composite by Direct Ink Writing
3.4.20 CL-20 Based Explosive Ink of Emulsion Binder System for Direct Ink Writing
3.5 Conclusions and Future Outlook
Declaration of Originality
References
4. Clathrates of CL-20: Thermal Decomposition and Combustion
4.1 Introduction
4.2 Host–guest Energetic Material Based on CL-20 and Nitrogen Oxides
4.2.1 Synthesis and Determination of the Structure of New Clathrates
4.2.2 Thermal Stability of the New Clathrates
4.2.3 Vapour Pressure Above the New Clathrates
4.2.4 Combustion Behaviors of the New Clathrates
4.2.5 Energetic Performance of the New Clathrates
4.3 Conclusion Remarks
Acknowledgments
References
5. HMX and CL-20 Crystals Containing Metallic Micro and Nanoparticles
5.1 Introduction
5.2 Research on High-Energy Cyclic Nitramines HMX and CL-20
5.2.1 Synthesis of HMX and CL-20 Crystals with Inclusion of Metal Particles
5.3 Production of Cyclic Nitramine Crystals with Metal Inclusions
5.3.1 Production of CL-20 Crystals with Metal Inclusions
5.3.2 Production of HMX Crystals with Metal Inclusions
5.4 Research on the Physicochemical and Explosive Characteristics of CL-20 and HMX Crystals with Metal Inclusions
5.5 Research on the Combustion of Fuel Samples Based on CL-20 Crystals with Metal Inclusions
5.6 Conclusions
Funding
Acknowledgments
References
6. Effects of TKX-50 on the Performance of Solid Propellants and Explosives
6.1 Introduction
6.2 Physicochemical Properties of TKX-50
6.3 Interactions Between TKX-50 and EMs
6.3.1 TKX-50/EMs Co-crystals
6.3.2 TKX-50/EMs Mixtures
6.4 Performance of Nano-sensitized TKX-50
6.5 Application in Solid Propellants
6.5.1 Ideal Energetic Performance
6.5.1.1 HTPB/TKX-50
6.5.1.2 GAP/TKX-50
6.5.1.3 NEPE/TKX-50 System
6.5.1.4 CMDB/TKX-50 System
6.5.2 Combustion Features
6.5.2.1 Combustion Behavior of TKX-50
6.5.2.2 Combustion Behavior of Solid Propellants Containing TKX-50
6.5.3 Thermal Decomposition
6.6 Application in Explosives
6.7 Conclusions
References
Part III. Metal-based Pyrotechnic Nanocomposites
7. Recent Advances in Preparation and Reactivity of Metastable Intermixed Composites
7.1 Introduction
7.2 The Preparation and Reactivity Control of MICs
7.2.1 Al-Based MICs with Random Distributed Structures
7.2.1.1 Preparation Methods
7.2.1.2 Characterization
7.2.1.3 Reactivity Control
7.2.2 Al-Based MICs with Multilayered Structures
7.2.2.1 Preparation Methods
7.2.2.2 Characterization
7.2.2.3 Reactivity Control
7.2.3 Al-Based MICs with Core–Shell Structures
7.2.3.1 Preparation Methods
7.2.3.2 Characterization
7.2.3.3 Reactivity Control
7.3 Conclusion and Suggestions
References
8. Nanothermites: Developments and Future Perspectives
8.1 Introduction
8.2 Nanothermites Versus Microthermites
8.3 Nanothermite-friendly Oxidizers
8.3.1 Metallic Oxidizers
8.3.2 Oxidizing Salts
8.4 Carbon Nanomaterials and Energetic Compositions
8.5 Future Challenges
8.6 Conclusion
References
9. Engineering Particle Agglomerate and Flame Propagation in 3D-printed Al/CuO Nanocomposites
9.1 Introduction
9.2 Printing High Nanothermite Loading Composite Via a Direct Writing Approach
9.3 Agglomerating in High Al/CuO Nanothermite Loading Composite
9.3.1 In-Operando Observation of Flame Front
9.3.2 Mapping Optical to Electron Microscopy of Agglomeration
9.3.3 Agglomeration Affects the Propagation Rate
9.4 Engineering Agglomerating and Propagating through Oxidizer Size and Morphology
9.4.1 The Concept of a Pocket Size
9.4.2 Reducing Agglomeration with CuO Wires
9.4.3 Promote Propagating through Using CuO Wires
9.4.4 Polymer Addition Significantly Reduces the Micro-Explosion of the Agglomerations
9.4.5 Summary
9.5 Engineering Agglomeration and Propagating through Restraining the Movement of Agglomerations
9.5.1 Adding Carbon Fibers to Promote Energy Release Rate in Energetic Composites
9.5.2 Embedding Carbon Fibers into High Loading Al/CuO Nanothermite Composite
9.5.3 Enhanced Propagation of Al/CuO Composite with Carbon Fibers
9.5.4 Enhanced Heat Feedback and Heat Transfer with Carbon Fibers: Restraining the Movement of Agglomerations
9.5.5 Summary
9.6 Conclusions and Future Directions
Acknowledgments
References
Part IV. Solid Propellants and Fuels for Rocket Propulsion
10. Glycidyl Azide Polymer Combustion and Applications Studies Performed at ISAS/JAXA
10.1 Introduction
10.2 Combustion Mechanism
10.2.1 Simplified Model by Asymptotic Analysis [47]
10.2.2 Three Phase-One Dimensional Full Kinetics Model [49, 50]
10.3 Application of GAP to Gas Hybrid Rocket Motor [2, 51–53]
10.4 Summary
References
11. Effect of Different Binders and Metal Hydrides on the Performance and Hydrochloric Acid Exhaust Products Scavenging of AP-Based Composite Solid Propellants: A Theoretical Analysis
Nomenclature
11.1 Introduction
11.2 Theoretical Background and Computation Procedure
11.2.1 Performance of Composite Solid Propellants
11.2.2 Propellant Energetic Ingredients
11.2.3 Computation Procedure of CSPs Performance
11.3 Results and Discussion
11.4 Conclusion
References
12. Combustion of Flake Aluminum with PTFE in Solid and Hybrid Rockets*
12.1 Introduction
12.1.1 Solid Rockets
12.1.1.1 Need for High Burn Rates in Solid Rockets
12.1.2 Hybrid Rockets
12.2 Aluminum Combustion in Composite Solid Propellant
12.2.1 Literature on Aluminum Combustion
12.3 Effect of Mechanical Activation in Composite Solid Propellants
12.3.1 Experiments with Solid Propellants
12.3.1.1 Preparation of Mechanically Activated Pyral
12.3.1.2 Preparation of Propellants
12.3.1.3 Experimental Setup
12.3.1.4 Experimental Procedure
12.3.2 Results and Discussions on Solid Rockets
12.3.2.1 Chemical Equilibrium Analysis
12.3.2.2 DSC and TG Analysis of Mechanically Activated Pyral
12.3.2.3 SEM Analysis of Mechanically Activated Pyral
12.3.2.4 Burn Rates and Temperature Sensitivity Analysis with Varying PTFE Fraction
12.3.2.5 Effect of Mechanical Activation of Pyral on Density, Viscosity, and Heat of Combustion of Propellant
12.3.2.6 Effect of Mechanically Activation of Pyral on the Agglomeration of Aluminum
12.3.2.7 Redesigning the Upper Stages of Launch Vehicles
12.4 Aluminum Combustion in Hybrid Rockets
12.4.1 Literature Review
12.4.2 Experiments with Mechanically Activated Pyral in Hybrid Rockets
12.4.2.1 Preparation of the Fuel Grain
12.4.2.2 The Process to Measure the Mechanical Properties
12.4.2.3 Experimental Setup and Test Procedures
12.4.3 Results and Discussions on Hybrid Rockets
12.4.3.1 Effect of Activated Pyral on Regression Rate
12.4.3.2 Effect on Mechanical Properties
12.4.3.3 Effect on Combustion Efficiency
12.4.3.4 Effect on the Exhaust Products
12.5 Conclusions
References
13. Effect of Nanometal Additives on The Ignition of Al-Based Energetic Materials
13.1 Introduction
13.2 Thermal Behavior of Metal NPs and EM Compositions
13.3 Ignition Characteristics of EM
13.4 Kinetic Parameters of Ignition
13.5 Conclusion
Acknowledgments
References
Volume 2
Part V. Solid Propellants and Fuels for In-Space Propulsion and Power
14. Lithium and Magnesium Fuels for Space Propulsion and Power
14.1 Introduction
14.2 Metal-CO2 Propulsion for Mars Missions
14.3 Lithium and Magnesium Fuels for Power Generation in Space
14.4 Conclusions
Acknowledgments
References
15. Solid Propellants for Space Microthrusters
15.1 Introduction
15.1.1 Requirements of Microthruster for Micro/Nano Satellites
15.1.2 Technological Progress of Solid Propellant Microthrusters
15.2 Microscale Effects on Combustion
15.3 Primer Explosive Solid Propellants
15.4 Thermite Solid Propellants
15.4.1 Design Principles
15.4.2 Survey of Candidate Thermites for Solid Propellants
15.4.3 Preparation and Performance of Al/CuO Thermite Propellant
15.5 Performance of Solid Propellant Microthrusters
15.6 Conclusion
Acknowledgments
References
Part VI. Primary and Secondary Explosives
16. Interesting New High Explosives and Melt-Casts
16.1 Introduction
16.2 Conclusions
Acknowledgments
References
17. Pyrotechnic Alternatives to Primary Explosive-Based Initiators
17.1 Initiation Theory
17.1.1 Shock Initiation
17.1.1.1 Theory and Factors to Consider
17.1.1.2 Example Devices
17.1.2 Deflagration to Detonation
17.1.2.1 Theory and Factors to Consider
17.1.2.2 Example Devices
17.2 Pyrotechnics in Initiators
17.2.1 Historic Use of Initiators
17.2.2 Introduction to Pyrotechnics
17.2.2.1 Pyrotechnic Fuels
17.2.2.2 Pyrotechnic Oxidizers
17.2.2.3 Pyrotechnic Compositions
17.2.2.4 Additives and Binders
17.2.2.5 Particle Size and Packing Arrangements
17.3 Nanomaterial Viability
17.3.1 Nano-thermite Processing
17.3.1.1 Fabrication of Laminates and Films
17.3.1.2 Fabrication/Production/Synthesis of Single-Component and Composite Nanoparticles
17.3.1.3 Chemical Processes
17.3.1.4 Physical Processes
17.3.1.5 Mechanical Size Reduction/Comminution
17.3.1.6 Preparing Compositions
17.3.1.7 Coatings for Enhanced Performance
17.4 Replacement of Primary Explosives
17.4.1 Performance Comparison: Primary Explosives and Pyrotechnics
17.4.2 Pyrotechnic Compositions or Systems as Initiators
17.5 Future Green Developments
17.5.1 Time Delay Compositions
17.5.1.1 Perchlorate-Free Time Delays
17.5.1.2 Heavy-Metal-Free Pyrotechnic Compositions
17.5.2 Gas Generators
17.6 Environmental Friendly Energetics
References
18. Light Sensitive Energetic Materials and Their Laser Initiation
18.1 Introduction
18.2 Laser Initiation of Energetic Materials
18.2.1 Energetic Metal Complexes
18.2.2 Influence of Carbon Nanomaterials on the Properties of Light Sensitive Metal Complexes
18.2.3 Organic High-Energy Materials
18.3 Conclusions
Funding
Acknowledgments
Conflict of Interests
Declaration of Originality
References
Part VII. Sensitivity and Mechanical Properties of Explosives
19. The Chemical Micromechanism of Energetic Material Initiation
19.1 Introduction
19.2 The Basic Mechanisms of the Thermal Decomposition of Organic and Some Important Ionic Energetic Materials
19.3 Thermal Decomposition and the Initiation of Detonation – What is Known About Their Relation
19.3.1 The Outputs of the Simple Non-isothermal Differential Thermal Analysis (DTA)
19.3.2 The Outputs of the Manometric Method of Thermal Reactivity Study
19.3.2.1 The Russian Manometric Method
19.3.2.2 The Results of the Czech Vacuum Stability Test STABIL
19.4 The Length of Trigger Bonds in EM Molecules and Their Initiation Reactivity
19.5 The Specification of Reaction Centers in EM Molecules
19.5.1 The Use of NMR Chemical Shifts
19.5.2 The Use of the Electron Charges at the Nitrogen Atom or the Net Charges at the Nitro Group
19.6 A Comparison of the Splitting of the Polynitro Compounds by Heat and by Shock
19.6.1 The Low-Temperature Thermal Decomposition of EMs as the Main Source Data
19.6.2 Where the First Fission of EM Molecules in a Detonation Wave Should Begin?
19.7 The Point of View of Chemical Physics or Physics of Explosion
19.8 The Initiation Reactivity and Energetics of EMs
19.8.1 Energy Outputs (Performance)
19.8.2 Energy Content
19.8.3 The Influence of the Energetics on Initiatory Reactivity
19.9 Conclusion
Acknowledgments
References
20. Macro-Micromechanics-Based Ignition Behavior of Explosives Under Low-Velocity Impact
20.1 Introduction
20.2 The Mechanical–Thermal–Chemical Coupling Model
20.2.1 The Constitutive Material Model
20.2.2 Hot Spot Formation Model
20.2.3 Modeling Verification
20.3 The Simulation on Ignition of Confined Steven Test
20.3.1 The Impact Velocity Effect on Ignition
20.3.2 The Size Effect on Ignition
20.3.3 The Projectile Shape Effect on Ignition
20.3.4 The Damage Effect on Ignition
20.4 The Stochastic Ignition Prediction
20.4.1 The Framework for Ignition Probability Prediction
20.4.2 The Effect of the Heterogeneous Microcrack Length on Ignition
20.4.3 The Effect of the Heterogeneous Microcrack Density on Ignition
20.5 Conclusion
Acknowledgments
References
21. Mechanical and Ignition Responses of HMX and RDX Single Crystals Under Impact and Shock Loading
21.1 Introduction
21.2 Dynamic Responses Under Impact Loading
21.2.1 Shock Loading
21.2.1.1 HMX Single Crystal
21.2.1.2 RDX Single Crystal
21.2.2 High-Pressure Ramp Loading
21.2.2.1 HMX Single Crystal
21.2.2.2 RDX Single Crystal
21.3 Drop-weight Impact Ignition and Burning
21.3.1 Jetting and Localized Reaction
21.3.2 Ignition and Burning Behaviors
21.3.3 Heat Generation Mechanisms
21.4 Modeling Dynamic Responses for Single Crystals
21.4.1 Kinematics and Thermodynamics
21.4.2 Inelasticity and Phase Transformation
21.4.3 Reactive Flow Model
21.5 Discussion and Summary
References
22. Dynamic Mechanical Properties of HTPB–IPDI Binders of Four PBX with Different HMX Contents and Energetic Particles Augmented Binder
22.1 Introduction
22.2 Samples
22.2.1 Preparation of Energetic Particles Enhanced Binder
22.2.2 Manufacturing the High Explosive Formulations
22.3 Measurement and Evaluation
22.3.1 DMA Measurement Method
22.3.2 Meaning of Loss Factor Curves
22.3.3 Evaluation of Loss Factor Curves with EMG
22.3.4 Parameterization of Frequency Shift of GRT Temperature
22.4 Results
22.6 Summary and Conclusions
List of Abbreviations
Symbols Used in Equations
Symbols Used with Curve Fitting and Measured Data
Symbols Used with Formulations and Materials
Acknowledgments
22.A Details on Congruence Between WLF and Modified Arrhenius Equation
22.B Special Consideration of Curing Agent IPDI
Index
توضیحاتی در مورد کتاب به زبان اصلی :
Provides an up-to-date account of innovative energetic materials and their potential applications in space propulsion and high explosives
Most explosives and propellants currently use a small number of ingredients, such as TNT and nitrocellulose. In comparison to conventional materials, nano- and micro-scale energetic materials exhibit superior burning characteristics and much higher energy densities and explosive yields. Nano and Micro-scale Energetic Materials: Propellants and Explosives provides a timely overview of innovative nano-scale energetic materials (nEMs) and microscale energetic materials (µEMs) technology.
Covering nEMs and µEMs ingredients as well as formulations, this comprehensive volume examines the preparation, characterization, ignition, combustion, and performance of energetic materials in various applications of propellants and explosives. Twenty-two chapters explore metal-based pyrotechnic nanocomposites, solid and hybrid rocket propulsion, solid fuels for in-space and power, the sensitivity and mechanical properties of explosives, new energetic materials, and more.
Explores novel energetic materials and their potential for use in propellants and explosives
Summarizes the most recent advances of leading research groups currently active in twelve countries
Discusses how new environmentally friendly, high-combustion energetic materials can best be used in different applications
Explains the fundamentals of energetic materials, including similarities and differences between composite propellants and explosives
Nano and Micro-scale Energetic Materials: Propellants and Explosives is an important resource for materials scientists, explosives specialists, pyrotechnicians, environmental chemists, polymer chemists, physical chemists, aerospace physicians, and aerospace engineers working in both academia and industry.