Nanocarbon-Inorganic Hybrids: Next Generation Composites for Sustainable Energy Applications

دانلود کتاب Nanocarbon-Inorganic Hybrids: Next Generation Composites for Sustainable Energy Applications

56000 تومان موجود

کتاب هیبریدهای نانوکربن غیر آلی: کامپوزیت های نسل بعدی برای کاربردهای انرژی پایدار نسخه زبان اصلی

دانلود کتاب هیبریدهای نانوکربن غیر آلی: کامپوزیت های نسل بعدی برای کاربردهای انرژی پایدار بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 4


توضیحاتی در مورد کتاب Nanocarbon-Inorganic Hybrids: Next Generation Composites for Sustainable Energy Applications

نام کتاب : Nanocarbon-Inorganic Hybrids: Next Generation Composites for Sustainable Energy Applications
عنوان ترجمه شده به فارسی : هیبریدهای نانوکربن غیر آلی: کامپوزیت های نسل بعدی برای کاربردهای انرژی پایدار
سری :
نویسندگان : ,
ناشر : Walter de Gruyter
سال نشر : 2014
تعداد صفحات : 554
ISBN (شابک) : 9783110269710
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 16 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Also of Interest
Nanocarbon-Inorganic Hybrids: Next Generation Composites for Sustainable Energy Applications
Copyright
Preface
Contents
Contributing authors
Part I: Nanocarbon building blocks
1. A short introduction on carbon nanotubes
1.1 Introduction
1.2 Structural aspects
1.2.1 Chirality
1.2.2 Defects
1.2.3 Doping
1.3 Properties of CNTs
1.3.1 Mechanical properties
1.3.2 Electronic properties
1.3.3 Thermal properties
1.4 Characterization
1.5 Synthesis
1.5.1 Laser ablation
1.5.2 Arc discharge
1.5.3 Molten salt route / electrolytic process
1.5.4 Chemical vapor deposition (CVD)
1.6 Post-synthesis treatments
1.6.1 Purification
1.6.2 Separation of metallic and semiconducting CNTs
1.6.3 Functionalization
1.6.4 Assembly
1.7 Summary
Bibliography
2. Synthesis, characterisation and properties of graphene
2.1 Introduction
2.2 Properties
2.3 Synthesis
2.3.1 Micromechanical cleavage
2.3.2 Liquid phase exfoliation
2.3.3 Precipitation frommetals/CVD
2.3.4 Epitaxial growth from SiC
2.4 Characterization
Bibliography
3. Functionalization of carbon nanotubes
3.1 Introduction
3.2 Functionalization.Why?
3.3 Types of functionalization
3.3.1 Covalent functionalization
3.3.2 Noncovalent functionalization
3.4 Functionalization with metals
3.5 Summary
Bibliography
4. The importance of defects and dopants within carbon nanomaterials during the fabrication of polymer composites
4.1 Introduction
4.1.1 Carbon nanostructures and their properties
4.1.2 Doped carbon nanostructures
4.1.3 Defects in carbon nanostructures
4.1.4 Functionalization of carbon nanostructures for nanocomposites
4.2 Incorporation of nanocarbons into polymer composites and hybrids
4.2.1 Types of polymer composites
4.2.2 Synthesis approaches
4.3 Properties
4.3.1 Mechanical properties
4.3.2 Thermal properties
4.3.3 Electrical properties
4.3.4 Optical properties
4.3.5 Biocompatibility
4.3.6 Biodegradation
4.3.7 Permeability
4.4 Summary
Bibliography
Part II: Synthesis and characterisation of hybrids
5. Synthesis strategies of nanocarbon hybrids
5.1 Introduction
5.2 Ex situ approaches
5.2.1 Covalent interactions
5.2.2 Noncovalent interactions
5.3 In situ approaches
5.3.1 In situ polymerization
5.3.2 Inorganic hybridization from metal salts
5.3.3 Electrochemical processes
5.3.4 Sol–gel processes
5.3.5 Gas phase deposition
5.4 Other nanocarbons
5.5 Comparison of synthesis techniques
5.6 Summary
Nomenclature
Bibliography
6. Graphene and its hybrids with inorganic nanoparticles, polymers and other materials
6.1 Introduction
6.2 Synthesis
6.3 Nanocarbon (graphene/C60/SWNT) hybrids
6.4 Graphene-polymer composites
6.5 Functionalization of graphene and related aspects
6.6 Graphene-inorganic nanoparticle hybrids
6.7 Graphene hybrids with SnO2, MoS2 and WS2 as anodes in batteries
6.8 Graphene-MOF hybrids
6.9 Summary
Bibliography
7. Sustainable carbon hybrid materialsmade by hydrothermal carbonization and their use in energy applications
7.1 Introduction
7.2 Hydrothermal synthesis of carbonaceousmaterials
7.2.1 From pure carbohydrates
7.2.2 From complex biomass
7.2.3 Energy applications of hydrothermal carbons and their hybrids
7.3 Summary
Bibliography
8. Nanocarbon-based composites
8.1 Introduction
8.2 Integration routes: From filler to other more complex structures
8.2.1 Filler route
8.2.2 Evaluation of reinforcement
8.2.3 Other properties
8.3 Hierarchical route
8.3.1 Structure and improvement in properties
8.3.2 Other properties
8.4 Fiber route
8.4.1 Different assembly routes
8.4.2 Assembly properties and structure
8.4.3 Assembly composites
8.4.4 Other properties of nanocarbon assemblies
8.5 Summary
Bibliography
9. Carbon-Carbon Composites
9.1 Introduction
9.2 Typology of C3 materials
9.3 Synthesis
9.4 Identification of the structural features of C3 material
9.5 Surface chemistry
9.6 Summary
Bibliography
10. Graphite oxide-MOF hybrid materials
10.1 Introduction
10.2 Building blocks
10.2.1 Graphite oxide
10.2.2 Metal Organic Frameworks:MOF-5, HKUST-1 and MIL-100(Fe)
10.3 Building the hybrid materials: Surface texture and chemistry
10.4 MOF-Graphite oxides composites as adsorbents of toxic gases
10.4.1 Ammonia
10.4.2 Nitrogen dioxide
10.4.3 Hydrogen sulfide
10.5 Beyond the MOF-Graphite oxides composites
10.6 Summary
Bibliography
Part III: Applications of nanocarbon hybrids
11. Batteries/Supercapacitors: Hybrids with CNTs
11.1 Introduction
11.2 Application of hybrids with CNTs for batteries
11.2.1 Lithium ion battery
11.2.2 Lithium sulfur battery
11.2.3 Lithium air battery
11.3 Application of hybrids with CNTs in supercapacitor
11.3.1 CNT-based carbon hybrid for supercapacitors
11.3.2 CNT-based inorganic hybrid for supercapacitors
11.4 Summary
Acknowledgment
Bibliography
12. Graphene-metal oxide hybrids for lithium ion batteries and electrochemical capacitors
12.1 Introduction
12.2 Graphene for LIBs and ECs
12.3 Graphene-metal oxide hybrids in LIBs and ECs
12.3.1 Typical structural models of graphene-metal oxide hybrids
12.3.2 Anchored model
12.3.3 Encapsulated model
12.3.4 Sandwich-like model
12.3.5 Layeredmodel
12.3.6 Mixed models
12.4 Summary
Acknowledgments
Bibliography
13. Nanocarbons for field emission devices
13.1 Introduction
13.2 Carbon nanotubes – general considerations
13.2.1 Field emission from nanocarbons
13.2.2 Emission from nanowalls and CNTs walls
13.3 Applications
13.3.1 Field emission electron guns for electronmicroscopes
13.3.2 Displays
13.3.3 Microtriodes and E-beam lithography
13.3.4 Microwave power amplifiers
13.3.5 Ionization gauges
13.3.6 Pulsed X-ray sources and tomography
13.4 Summary
Acknowledgments
Bibliography
14. Carbon, carbon hybrids and composites for polymer electrolyte fuel cells
14.1 Introduction
14.2 Carbon as electrode and electrocatalyst
14.2.1 Structure and properties
14.2.2 Electrochemical properties
14.2.3 Applications
14.3 Carbon, carbon hybrids and carbon composites in PEFCs
14.3.1 Carbon as structural component in PEFCs
14.3.2 Carbon as PEFC catalyst support
14.3.3 Carbon hybrids and composites as ORR electrocatalysts
14.4 Summary
Nomenclature
Bibliography
15. Nanocarbon materials for heterogeneous catalysis
15.1 Introduction
15.2 Relevant properties of nanocarbons
15.2.1 Textural properties and macroscopic shaping
15.2.2 Surface chemistry and functionalization
15.2.3 Confinement effect
15.3 Nanocarbon-based catalysts
15.3.1 Dehydrogenation of Hydrocarbons
15.3.2 Dehydrogenations of alcohols
15.3.3 Other reactions
15.4 Nanocarbon as catalyst support
15.4.1 Catalyst preparation strategies
15.4.2 Applications in heterogeneous catalysis
15.5 Summary
Bibliography
16. Advanced photocatalytic materials by nanocarbon hybrid materials
16.1 Introduction
16.1.1 Hybrid vs. composite nanomaterials
16.1.2 Use of nanocarbon hybrid materials in photoreactions
16.2 Nanocarbon characteristics
16.2.1 The role of defects
16.2.2 Modification of nanocarbons
16.2.3 New aspects
16.2.4 Nanocarbon quantum dots
16.3 Mechanisms of nanocarbon promotion in photoactivated processes
16.4 Advantages of nanocarbon-semiconductor hybrid materials
16.5 Nanocarbon-semiconductor hybrid materials for sustainable energy
16.6 Summary
Acknowledgments
Bibliography
17. Electrochromic and photovoltaic applications of nanocarbon hybrids
17.1 Introduction
17.2 Nanocarbon Hybrids for electrochromicmaterials and devices
17.2.1 Intrinsic electrochromismof nanocarbons
17.2.2 Synthesis and electrochromic properties of nanocarbon–metal oxide hybrids
17.2.3 Electrochromic properties of nanocarbon–polymer hybrids
17.3 Nanocarbon hybrids for photovoltaic applications
17.3.1 Workingmechanisms of PECs and OPVs
17.3.2 Nanocarbon hybrids for PECs
17.3.3 Nanocarbon hybrids for OPVs
17.4 Summary
Acknowledgments
Bibliography
18. Carbon nanomaterials as integrative components in dye-sensitized solar cells
18.1 Today’s dye-sensitized solar cells. Definition and potential
18.2 Major challenges in improving the performance of DSSCs
18.3 Carbon nanomaterials as integrativematerials in semiconducting electrodes
18.3.1 Interlayers made out of carbon nanomaterials
18.3.2 Implementation of carbon nanomaterials into electrode networks
18.4 Carbon nanomaterials for solid-state electrolytes
18.4.1 Fullerene-based solid-state electrolytes
18.4.2 CNTs-based solid-state electrolytes
18.4.3 Graphene-based solid-state electrolytes
18.5 Versatility of carbon nanomaterials-based hybrids as novel type of dyes
18.5.1 Fullerene-baseddyes
18.5.2 Graphene-based dyes
18.6 Photoelectrodes prepared by nanographene hybrids
18.6.1 Preparation of photoelectrodes by using noncovalently functionalized graphene
18.6.2 Preparation of photoelectrodes by preparing nanographene-based building blocks via electrostatic interactions
18.7 Summary
Bibliography
19. Importance of edge atoms
19.1 Introduction
19.2 External edges
19.3 Internal edges
19.4 Edge reconstruction
19.5 Summary
Bibliography
Index




پست ها تصادفی