توضیحاتی در مورد کتاب Nanotechnology in cement-based construction
نام کتاب : Nanotechnology in cement-based construction
عنوان ترجمه شده به فارسی : فناوری نانو در ساخت و ساز مبتنی بر سیمان
سری :
نویسندگان : D'Alessandro. Antonella, Materazzi. Annibale Luigi, Ubertini. Filippo
ناشر : Jenny Stanford Publishing
سال نشر : 2020
تعداد صفحات : 331
ISBN (شابک) : 9789814800761 , 9814800767
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover......Page 1
Half Title......Page 2
Title Page......Page 3
Copyright Page......Page 4
Table of Contents......Page 5
Preface......Page 13
1.1 Introduction......Page 14
1.2 Dispersion of Nanoinclusions in a Cementitious Matrix......Page 15
1.3 Nanoinclusions for Cement-Based Materials......Page 16
1.3.1.1 Carbon nanotubes......Page 19
1.3.1.4 Carbon black......Page 20
1.3.1.5 Graphene oxide......Page 21
1.3.2.3 Silver nanoparticles......Page 22
1.3.2.7 Nano-MgO......Page 23
1.4 Safety of Nanomaterials......Page 24
1.5 Discussion and Conclusion......Page 25
2 Dispersion Techniques of Nanoinclusions in Cement Matrixes......Page 31
2.1 Carbon Nanotubes: Chemical Structure and Properties......Page 30
2.2 Dispersion Techniques of Carbon Nanotubes: Similia Similibus Solvuntur?......Page 32
2.2.1.1 Ultrasonication physical method......Page 34
2.2.2 Chemical Methods for CNT Dispersion......Page 35
2.2.2.1 Surfactants: structure, properties, and solubilizing capabilities......Page 36
2.3 Dispersion of Carbon Nanotubes in Water with Surfactants: Similia Similibus Solvuntur (with the Help of Ultrasonication)......Page 37
2.3.1 Optimization of CNT Dispersion with Surfactants......Page 40
2.3.1.1 Commercially available surfactants for CNT dispersions......Page 41
2.3.1.2 Increasing CNT dispersion with the use of properly designed surfactants......Page 42
3 Use of Styrene Ethylene Butylene Styrene for Accelerated Percolation in Composite Cement–Based Sensors Filled with Carbon Black......Page 47
3.1 Introduction......Page 46
3.2 SEBS-CB Sensors......Page 48
3.2.2 Sensor Fabrication......Page 49
3.3 Methodology......Page 51
3.3.1 Mix Proportions......Page 52
3.3.2 Quality Control......Page 53
3.4 Results and Discussion......Page 54
3.4.1 Percolation Thresholds......Page 55
3.4.2 Strain Sensitivity......Page 56
3.5 Conclusion......Page 57
4 Advancements in Silica Aerogel–Based Mortars......Page 61
4.1 Introduction......Page 60
4.1.1 Nanomaterials......Page 64
4.2 Silica-Based Aerogel......Page 66
4.3 Aerogel-Based Mortars......Page 70
4.4 Performance of Aerogel-Based Mortars......Page 73
4.5 Conclusions......Page 75
5 Multifunctional Cement-Based Carbon Nanocomposites......Page 83
5.1 Introduction......Page 82
5.2 Design and Manufacture of Multifunctional Cement-Based Carbon Nanocomposites......Page 84
5.3 Behaviors of Multifunctional Cement-Based Carbon Nanocomposites......Page 86
5.3.1 Mechanical Behaviors......Page 87
5.3.2 Electrically Conductive Behavior......Page 88
5.3.4 Damping Behavior......Page 90
5.3.5 Electromagnetic Shielding/Absorbing Behaviors......Page 91
5.4 Conclusions......Page 92
6.2 Electrically Conductive and Electromechanical Mechanisms......Page 98
6.1 Introduction......Page 97
6.2.1.1 Contacting conduction......Page 99
6.2.1.3 Ionic conduction......Page 100
6.2.2 Electrically Conductive Mechanisms......Page 101
6.3 Analysis of Electromechanical Properties......Page 103
6.3.1 Electrical Resistivity......Page 104
6.4 Modeling of Electromechanical Properties......Page 106
6.3.4 Electrical Impedance Tomography......Page 107
6.4.2 Model Based on Field Emission Conduction......Page 108
6.4.3 Model Based on a Lumped Circuit......Page 109
6.5 Conclusion......Page 110
7 Evaluation of Mechanical Properties of Cement-Based Composites with Nanomaterials......Page 115
7.1 Introduction......Page 114
7.2 Nanosilica......Page 116
7.3 Nanotitania......Page 117
7.4 Nanoalumina......Page 118
7.5 Nano–Iron Oxide......Page 119
7.6 Nanoclay......Page 120
7.7 Nanocarbon Materials......Page 121
7.7.1 Graphene Nanoplatelets......Page 122
7.7.3 Carbon Nanotubes......Page 123
7.9 Future Perspective......Page 124
8.2 Micromechanics Modeling of the Mechanical Properties of Nanomodified Composites......Page 133
8.1 Introduction and Synopsis......Page 132
8.2.1 Fundamentals of Mean-Field Homogenization......Page 134
8.2.2 Eshelby’s Equivalent Inclusion......Page 139
8.2.5 Extended Eshelby–Mori–Tanaka Approaches......Page 142
8.2.6 Modeling of CNT Waviness......Page 144
8.2.7 Modeling of CNT Agglomeration......Page 148
8.3 Micromechanics Modeling of the Electrical Properties of CNT-Reinforced Composites......Page 149
8.3.1 Physical Mechanisms Governing the Electrical Conductivity of CNT-Reinforced Composites......Page 151
8.3.1.1 Tunneling resistance: thickness and conductivity of the interface......Page 152
8.3.1.2 Nanoscale composite cylinder model for CNTs......Page 153
8.3.2 Percolation Threshold Estimates......Page 154
8.3.3 Micromechanics Model for the Overall Conductivity of CNT-Reinforced Composites......Page 157
8.3.3.1 Waviness and agglomeration effects......Page 160
8.3.4.1 Volume expansion and reorientation of CNTs......Page 161
8.3.4.2 Change in the conductive networks......Page 163
8.3.4.3 Change in the tunneling resistance......Page 164
8.4 Summary......Page 166
9.3 Cement-Based Sensors for Structural Health Monitoring......Page 171
9.2 State of the Art of Nanomodified Structures......Page 170
9.4 Structures with Embedded Cement-Based Sensors......Page 180
9.5 Structures Made of Nanomodified Cement-Based Materials......Page 184
9.6 Comments......Page 195
9.7 Conclusion......Page 196
10.1 Introduction......Page 200
10 Cement-Based Piezoresistive Sensors for Structural Monitoring......Page 201
10.2 Various Types of Cement-Based Sensors......Page 202
10.2.1 Piezoresistivity......Page 203
10.2.2 Cement-Based Composites......Page 204
10.2.3 Carbon-Based Materials (Conductive Fillers)......Page 205
10.2.4 Dispersion of Carbon-Based Nanomaterials in Cement-Based Composites......Page 206
10.2.5 Preparation of Cement-Based Sensors and Test Configurations......Page 209
10.2.6 Self-Sensing Properties by Various Carbon-Based Materials......Page 211
10.3 Practical Applications of Cement-Based Sensors......Page 214
10.4 Conclusions......Page 220
11.2 Incorporation of PCM in Concrete, Mortar, or Cement......Page 225
11.1 Introduction......Page 224
11.3 Enhancing PCM Microcapsules with Nanoparticles for Cement-Based Composites......Page 226
12.2 Thermal Energy Storage......Page 232
12.1 Introduction......Page 231
12.3 Phase Change Materials......Page 234
12.2.2 Latent Heat Thermal Storage......Page 235
12.4 Cement-Based Composites with PCMs......Page 236
12.4.1 Incorporation of PCMs in Cement-Based Materials Obtained with the Immersion Method......Page 238
12.4.2 Incorporation of PCMs in Cement-Based Materials Obtained with Direct Mixing......Page 239
12.4.3 Incorporation of PCMs in Cement-Based Materials Obtained with the Impregnation Method......Page 242
12.5 PCMs and Nanoinclusions for Cement-Based Materials......Page 248
12.5.1 Selection of PCMs......Page 249
12.5.2 Selection of Nanoparticles......Page 250
12.5.3 PCMs and Nanoinclusions for Cement-Based Materials......Page 251
12.5.4 NEPCM-Cement-Based Materials for Building and Construction Applications......Page 256
12.6 Conclusions......Page 259
13 Self-Heating Conductive Cement-Based Nanomaterials......Page 264
13.1 Introduction......Page 263
13.2 Heating/Cooling Model......Page 265
13.3 Stage of Heating Produced by the Application of Electric Current......Page 266
13.4 Stage of Cooling......Page 267
14 Functional Cementitious Composites for Energy Harvesting and Civil Engineering Applications: An Overview......Page 275
14.1 Introduction......Page 274
14.2 Composite Materials and Their Constituents......Page 276
14.2.1.2 Dispersed (reinforcing) phase......Page 278
14.2.1.3 Interface in the composite structure......Page 279
14.3 Composite Materials with Piezoelectric, Ferroelectric, and Pyroelectric Functionalities......Page 280
14.3.1 Classification......Page 281
14.5 Ambient Energy Harvesting and Structural Health Monitoring of Civil Structures via Cement Nanocomposites......Page 282
14.4.2 Fabrication of Cement-Ceramic Composites......Page 283
14.5.1 Energy Harvesting via Cement Nanocomposites......Page 284
14.5.1.2 Polycrystalline-based materials......Page 287
14.5.1.4 Thermal energy harvesting from pavements via modeling and simulation......Page 291
14.5.1.5 Waste heat harvesting via thermoelectric cement composites......Page 296
14.5.1.6 Electric power harvesting via application of piezoelectric transducers in pavements......Page 297
14.6 Summary and Future Outlook......Page 298
15 Addition of Carbon Nanofibers to Cement Pastes for Electromagnetic Interference Shielding in Construction Applications......Page 303
15.1 Introduction......Page 302
15.1.2 Shielding by Absorption......Page 306
15.1.3 Shielding by Multiple Reflections......Page 307
15.2 Experimental......Page 308
15.3 Results and Discussion......Page 309
15.2.2 Testing Procedures......Page 310
15.4 Conclusions......Page 312
16 Perspectives and Challenges of Nanocomposites......Page 315
Index......Page 317