توضیحاتی در مورد کتاب Network anomaly detection: a machine learning perspective
نام کتاب : Network anomaly detection: a machine learning perspective
عنوان ترجمه شده به فارسی : تشخیص ناهنجاری شبکه: دیدگاه یادگیری ماشین
سری :
نویسندگان : Bhattacharyya, Dhruba K
ناشر : CRC Press, Taylor & Francis Group
سال نشر : 2014
تعداد صفحات : 364
ISBN (شابک) : 9781466582088 , 1466582081
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
IntroductionThe Internet and Modern NetworksNetwork VulnerabilitiesAnomalies and Anomalies in NetworksMachine LearningPrior Work on Network Anomaly DetectionContributions of This BookOrganizationNetworks and AnomaliesNetworking BasicsAnomalies in a NetworkAn Overview of Machine Learning MethodsIntroductionTypes of Machine Learning MethodsSupervised Learning: Some Popular MethodsUnsupervised LearningProbabilistic LearningSoft ComputingReinforcement LearningHybrid Learning MethodsDiscussionDetecting Anomalies in Network DataDetection of Network AnomaliesAspects of Network Anomaly DetectionDatasetsDiscussionFeature SelectionFeature Selection vs. Feature ExtractionFeature RelevanceAdvantagesApplications of Feature SelectionPrior Surveys on Feature SelectionProblem FormulationSteps in Feature SelectionFeature Selection Methods: A TaxonomyExisting Methods of Feature SelectionSubset Evaluation MeasuresSystems and Tools for Feature SelectionDiscussionApproaches to Network Anomaly DetectionNetwork Anomaly Detection MethodsTypes of Network Anomaly Detection MethodsAnomaly Detection Using Supervised LearningAnomaly Detection Using Unsupervised LearningAnomaly Detection Using Probabilistic LearningAnomaly Detection Using Soft ComputingKnowledge in Anomaly DetectionAnomaly Detection Using Combination LearnersDiscussionEvaluation MethodsAccuracyPerformanceCompletenessTimelinessStabilityInteroperabilityData Quality, Validity and ReliabilityAlert InformationUnknown Attacks DetectionUpdating ReferencesDiscussionTools and SystemsIntroductionAttack Related ToolsAttack Detection SystemsDiscussionOpen Issues, Challenges and Concluding RemarksRuntime Limitations for Anomaly Detection SystemsReducing the False Alarm RateIssues in Dimensionality ReductionComputational Needs of Network Defense MechanismsDesigning Generic Anomaly Detection SystemsHandling Sophisticated AnomaliesAdaptability to Unknown AttacksDetecting and Handling Large-Scale AttacksInfrastructure AttacksHigh Intensity AttacksMore Inventive AttacksConcluding RemarksReferencesIndex