Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models

دانلود کتاب Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models

46000 تومان موجود

کتاب مدل‌سازی شبکه‌گرا برای شبکه‌های تطبیقی: طراحی مدل‌های شبکه‌های زیستی، ذهنی و اجتماعی تطبیقی ​​مرتبه بالاتر نسخه زبان اصلی

دانلود کتاب مدل‌سازی شبکه‌گرا برای شبکه‌های تطبیقی: طراحی مدل‌های شبکه‌های زیستی، ذهنی و اجتماعی تطبیقی ​​مرتبه بالاتر بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 6


توضیحاتی در مورد کتاب Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models

نام کتاب : Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models
ویرایش : 1st ed. 2020
عنوان ترجمه شده به فارسی : مدل‌سازی شبکه‌گرا برای شبکه‌های تطبیقی: طراحی مدل‌های شبکه‌های زیستی، ذهنی و اجتماعی تطبیقی ​​مرتبه بالاتر
سری : Studies in Systems, Decision and Control 251
نویسندگان :
ناشر : Springer International Publishing
سال نشر : 2020
تعداد صفحات : 418
ISBN (شابک) : 9783030314446 , 9783030314453
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 18 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :




این کتاب به موضوع چالش‌برانگیز مدل‌سازی شبکه‌های تطبیقی ​​می‌پردازد، که اغلب رفتارهای ذاتاً پیچیده را نشان می‌دهند. شبکه‌ها را معمولاً می‌توان با استفاده از یک رویکرد مدل‌سازی شبکه‌محور ساده، شفاف و شفاف مدل‌سازی کرد. در مقابل، شبکه های تطبیقی ​​شبکه هایی هستند که ساختار خود را تغییر می دهند. به عنوان مثال، ارتباطات در شبکه های ذهنی معمولاً به دلیل یادگیری تغییر می کند، در حالی که ارتباطات در شبکه های اجتماعی به دلیل پویایی های مختلف اجتماعی تغییر می کند. برای شبکه‌های تطبیقی، معمولاً مشخصات رویه‌ای جداگانه برای فرآیند تطبیق اضافه می‌شود. بر این اساس، مدل‌سازان باید با مشخصات ترکیبی کمتر شفافی سر و کار داشته باشند که بخشی از آن اغلب بیشتر در سطح برنامه‌نویسی است تا در سطح مدل‌سازی.

این کتاب یک رویکرد کلی مدل‌سازی شبکه‌محور را ارائه می‌کند که طراحی مدل‌های شبکه تطبیقی ​​را بسیار آسان‌تر می‌کند، زیرا فرآیند انطباق نیز به شیوه‌ای منظم، توضیحی، و از نظر مفهومی شفاف مدل‌سازی شبکه‌گرا مدل‌سازی شده است. مثل خود شبکه به لطف این رویکرد، هیچ مهارت رویه‌ای، الگوریتمی یا برنامه‌نویسی برای طراحی مدل‌های شبکه تطبیقی ​​پیچیده مورد نیاز نیست. یک محیط نرم افزاری اختصاصی برای اجرای این مدل های شبکه تطبیقی ​​از مشخصات سطح بالای آنها در دسترس است.

علاوه بر این، از آنجایی که شبکه‌های تطبیقی ​​در قالب شبکه نیز توصیف می‌شوند، این رویکرد به سادگی می‌تواند به صورت تکراری اعمال شود، به طوری که شبکه‌های تطبیقی ​​مرتبه بالاتر که در آن‌ها انطباق شبکه خود تطبیقی ​​است (انطباق مرتبه دوم)، همچنین می توان به همین راحتی مدل سازی کرد. به عنوان مثال، این می تواند برای مدل سازی متاپلاستیسیته در علوم اعصاب شناختی، یا سازگاری درجه دوم در زمینه های زیستی و اجتماعی اعمال شود. این کتاب سودمندی این رویکرد را از طریق مثال‌های متعددی از مدل‌های شبکه تطبیقی ​​پیچیده (در حد بالاتر) برای طیف گسترده‌ای از فرآیندهای بیولوژیکی، ذهنی و اجتماعی نشان می‌دهد.

این کتاب برای کارشناسی ارشد و دکتری چند رشته‌ای مناسب است. دانش‌آموزان بدون فرض دانش قبلی، اگرچه برخی از تحلیل‌های ریاضی ابتدایی نیز در آن دخیل هستند. با توجه به اطلاعات دقیق ارائه شده، می توان از آن به عنوان مقدمه ای برای مدل سازی شبکه گرا برای شبکه های تطبیقی ​​استفاده کرد. این مطالب برای آموزش دانشجویان مقطع کارشناسی و کارشناسی ارشد با زمینه ها یا علایق چند رشته ای ایده آل است. سخنرانان مطالب اضافی مانند اسلایدها، تکالیف و نرم افزار را پیدا خواهند کرد.


فهرست مطالب :


Front Matter ....Pages i-xvii
Front Matter ....Pages 1-1
On Adaptive Networks and Network Reification (Jan Treur)....Pages 3-24
Ins and Outs of Network-Oriented Modeling (Jan Treur)....Pages 25-55
Front Matter ....Pages 57-57
A Unified Approach to Represent Network Adaptation Principles by Network Reification (Jan Treur)....Pages 59-98
Modeling Higher-Order Network Adaptation by Multilevel Network Reification (Jan Treur)....Pages 99-119
Front Matter ....Pages 121-121
A Reified Network Model for Adaptive Decision Making Based on the Disconnect-Reconnect Adaptation Principle (Jan Treur)....Pages 123-142
Using Multilevel Network Reification to Model Second-Order Adaptive Bonding by Homophily (Jan Treur)....Pages 143-166
Modeling Higher-Order Adaptive Evolutionary Processes by Reified Adaptive Network Models (Jan Treur)....Pages 167-185
Higher-Order Reified Adaptive Network Models with a Strange Loop (Jan Treur)....Pages 187-208
Front Matter ....Pages 209-209
A Modeling Environment for Reified Temporal-Causal Network Models (Jan Treur)....Pages 211-224
On the Universal Combination Function and the Universal Difference Equation for Reified Temporal-Causal Network Models (Jan Treur)....Pages 225-247
Front Matter ....Pages 249-249
Relating Emerging Network Behaviour to Network Structure (Jan Treur)....Pages 251-280
Analysis of a Network’s Emerging Behaviour via Its Structure Involving Its Strongly Connected Components (Jan Treur)....Pages 281-318
Front Matter ....Pages 319-319
Relating a Reified Adaptive Network’s Structure to Its Emerging Behaviour for Bonding by Homophily (Jan Treur)....Pages 321-352
Relating a Reified Adaptive Network’s Emerging Behaviour Based on Hebbian Learning to Its Reified Network Structure (Jan Treur)....Pages 353-372
Front Matter ....Pages 373-373
Mathematical Details of Specific Difference and Differential Equations and Mathematical Analysis of Emerging Network Behaviour (Jan Treur)....Pages 375-403
Using Network Reification for Adaptive Networks: Discussion (Jan Treur)....Pages 405-412

توضیحاتی در مورد کتاب به زبان اصلی :


This book addresses the challenging topic of modeling adaptive networks, which often manifest inherently complex behavior. Networks by themselves can usually be modeled using a neat, declarative, and conceptually transparent Network-Oriented Modeling approach. In contrast, adaptive networks are networks that change their structure; for example, connections in Mental Networks usually change due to learning, while connections in Social Networks change due to various social dynamics. For adaptive networks, separate procedural specifications are often added for the adaptation process. Accordingly, modelers have to deal with a less transparent, hybrid specification, part of which is often more at a programming level than at a modeling level.

This book presents an overall Network-Oriented Modeling approach that makes designing adaptive network models much easier, because the adaptation process, too, is modeled in a neat, declarative, and conceptually transparent Network-Oriented Modeling manner, like the network itself. Thanks to this approach, no procedural, algorithmic, or programming skills are needed to design complex adaptive network models. A dedicated software environment is available to run these adaptive network models from their high-level specifications.

Moreover, because adaptive networks are described in a network format as well, the approach can simply be applied iteratively, so that higher-order adaptive networks in which network adaptation itself is adaptive (second-order adaptation), too can be modeled just as easily. For example, this can be applied to model metaplasticity in cognitive neuroscience, or second-order adaptation in biological and social contexts. The book illustrates the usefulness of this approach via numerous examples of complex (higher-order) adaptive network models for a wide variety of biological, mental, and social processes.

The book is suitable for multidisciplinary Master’s and Ph.D. students without assuming much prior knowledge, although also some elementary mathematical analysis is involved. Given the detailed information provided, it can be used as an introduction to Network-Oriented Modeling for adaptive networks. The material is ideally suited for teaching undergraduate and graduate students with multidisciplinary backgrounds or interests. Lecturers will find additional material such as slides, assignments, and software.




پست ها تصادفی