توضیحاتی در مورد کتاب Next Generation Batteries: Realization of High Energy Density Rechargeable Batteries
نام کتاب : Next Generation Batteries: Realization of High Energy Density Rechargeable Batteries
عنوان ترجمه شده به فارسی : باتری های نسل بعدی: تحقق باتری های قابل شارژ با چگالی انرژی بالا
سری :
نویسندگان : Kiyoshi Kanamura (editor)
ناشر : Springer
سال نشر :
تعداد صفحات : 564
ISBN (شابک) : 9789813366671 , 9813366672
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 35 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Foreword\n Specially Promoted Research for Innovative Next Generation Batteries of Advanced Low Carbon Technology Research and Development Program (ALCA-SPRING)—A Next Generation Battery Project in Japan\nPreface\nContents\nIntroduction\nImportance of Next-Generation Batteries\n 1 Reduction of Carbon Dioxide\n 2 Energy Density of Battery\n 3 Batteries for EVs\n References\nLithium Metal Battery\nRechargeable Lithium Metal Battery\n 1 Li Metal Anode\n 2 SEI and Cyclability of Li Metal Anode\n 3 Effect of Morphology Change on Cyclability of Li Metal Anode\n 4 New Electrolyte System\n 5 Artificial SEI Formation\n 6 Additives\n 7 New Current Collector\n 8 Solid Electrolyte\n 9 New Separator for Li Metal Anode\n 10 Summary\n References\nConcentrated Electrolytes for Lithium Metal Negative Electrodes\n 1 Development of Concentrated Electrolytes\n 2 Li Metal in Concentrated Electrolytes\n 3 Mechanism of Better Plating/Stripping Reversibility\n 3.1 SEI Formation in Concentrated Electrolytes\n 3.2 Morphology of Li Metal in Concentrated Electrolytes\n 4 Summary and Future Perspectives\n References\nAll-Solid-State Battery with Sulfide Electrolyte\nCrystalline Electrolyte\n 1 Development of Lithium-Ion Conductors\n 2 Li7Ge3PS12 Argyrodite Phase\n 3 Li10+δ[SnySi1–y]1+δP2–δS12 with LGPS-Type Structure\n 4 Concluding Remarks\n References\nGlass Electrolyte\n 1 Introduction\n 2 Synthesis Procedure\n 3 Conductive and Mechanical Properties\n 4 Stability Against Moisture\n 5 Concluding Remarks\n References\nSuspension Process\n 1 Preparation of Li7P3S11\n 2 Preparation of β-Li3PS4\n 3 Preparation of Li7P2S8I\n References\nSolution Process\n 1 Preparation of Solid Electrolyte via Homogeneous Solution\n 2 Precursor Solution of Argyrodite Solid Electrolytes\n References\nWet Chemical Processes for the Preparation of Composite Electrodes in All-Solid-State Lithium Battery\n 1 Introduction\n 2 Dissolution–Reprecipitation Process\n 3 Suspension Syntheses\n 4 Combination of Suspension Synthesis and Dissolution–Reprecipitation Process\n 5 Conclusion\n References\nDry Coating of Electrode Particle with Solid Electrolyte for Composite Electrode of All-Solid-State Battery\n 1 Introduction\n 2 Fundamental Concept of Dry Coating\n 3 Feasibility Study of Dry Coating Process Using Model Sulfide SE\n 4 Dry Coating of NCM with Li3PS4 Sulfide SE and Performance of All-Solid-State Half Cell\n 5 Concluding Remarks\n References\nBulk-Type Solid-State LIB\n 1 Introduction\n 2 Typical Bulk-Type Solid-State Test Cells and Their Properties\n 3 Solid Electrolyte-Coated Electrode Materials\n References\nSheet-Type Solid-State LIB\n 1 Introduction\n 2 Basic Requirements\n 3 Solid Electrolyte Fine Particles\n 4 Electrode and Solid Electrolyte Sheets\n 5 Pressing\n 6 Confining Pressure\n References\nSulfur and Sulfide Positive Electrode\n 1 Introduction\n 2 Sulfur Positive Electrode\n 3 Sulfide Positive Electrode\n References\nLi Negative Electrode\n 1 Introduction\n 2 Interface Modification of Au Thin Film\n 3 Use of Sulfide Electrolytes Compatible to Li Metal\n 4 Concluding Remarks\n References\nTEM Analyses\n 1 Introduction\n 2 TEM Experimental Methods\n 3 TEM Analysis of Sulfide-Based Solid Electrolytes\n 3.1 Microstructures in Li2S-P2S5 Glass Ceramics\n 3.2 Crystallization Process in the Li2S-P2S5 Glass\n 3.3 Crystallization of LPS-NMC Electrode Composites\n 4 Summary\n References\nXAFS Analysis\n 1 Introduction\n 2 XAFS Analysis\n 3 Depth-Resolved XAFS Analysis\n 3.1 Abstract\n 3.2 Principle\n 3.3 Measurement Example\n 4 Two-Dimensional XAFS Analysis\n 4.1 Abstract\n 4.2 Principle\n 4.3 Measurement Example\n 5 Summary\n References\nCharacterization of Cathode/Sulfide Electrolyte Interface Using a Thin-Film Model Battery\n 1 Toward High Voltage Operation of All-Solid-State Batteries\n 2 Fabrication of Sulfide-Type Thin-Film Batteries\n 3 High Voltage Operation of LiCoO2 with Sulfide Electrolyte\n 4 Interfacial Reactions of LiCoO2/LiNbO3/Li3PS4\n 5 Concluding Remarks\n References\nAll-Solid-State Battery with Oxide-Based Electrolytes\nSolid-State Batteries with Oxide-Based Electrolytes\n References\nPerovskite-Type Lithium-Ion Solid Electrolytes\n 1 Introduction\n 2 Structure, Chemical Bond, and Ionic Conductivity of Perovskite-Type Li-Ion Solid Electrolytes\n 2.1 Crystal Structure of Perovskite-Type Compounds\n 2.2 A-Site Deficient Perovskite-Type Li-Ion Solid Electrolytes and the Li Position\n 2.3 Ionic Diffusion Mechanism in Perovskite-Type Li-Ion Solid Electrolytes\n 3 Ionic Conduction at the Grain Boundary and Electrochemical Stability of Perovskite-Type Li-Ion Solid Electrolytes\n 3.1 Ionic Conduction at Grain Boundaries\n 3.2 Electrochemical Stability as Solid Electrolytes of Batteries\n 4 Summary and Outlook\n References\nGarnet-Type Lithium Ion Conducting Oxides: Li7La3Zr2O12 and Its Chemical Derivatives\n 1 Introduction\n 2 Crystal Structure of Garnet-Type Lithium Ion Conducting Oxides\n 3 Synthesis of Polycrystalline Li7−XLa3Zr2−XTaxO12 by Solid-State Reaction\n 4 Synthesis of Polycrystalline Li6.5La3M1.5Ta0.5O12 (M: Zr, Hf, Sn) by Solid-State Reaction\n 5 Low-Temperature Synthesis of Tetragonal Li7La3Zr2O12 by Co-Precipitation Method\n 6 Low-Temperature Synthesis of Li6.5La3Zr1.5Ta0.5O12 Using Precursor Oxides\n 7 Synthesis of al-Doped Li7La3Zr2O12 Single Crystals by a Flux Method\n 8 Crystal Growth of Li6.5La3Zr1.5Ta0.5O12 Single Crystals by Melt Growth Technique\n 9 Concluding Remarks\n References\nPowder-Process-Based Fabrication of Oxide-Based Bulk-Type All-Solid-State Batteries\n 1 Introduction\n 2 Fabrication of Low-GB-Resistance Interfaces in OE Compacts by Powder Sintering\n 2.1 Effect of Sintering Temperature/Time on GB Resistance\n 2.2 Effect of Sintering Atmosphere on GB Resistance\n 2.3 Use of Spark-Plasma Sintering (SPS) to Minimize GB Resistance\n 3 AM/OE Interface Fabrication by Powder Co-Sintering\n 4 Conclusions\n References\nLithium Chloroboracite Li4B4M3O12Cl (M = Al, Ga): Glass-Ceramic Synthesis and Application to Solid-State Rechargeable Lithium Batteries\n 1 Introduction\n 2 Synthesis of Glass-Ceramics [16]\n 3 Cubic Lithium Chloroboracite with Substituted Boron Sites, Li4B4M3O12Cl (M = Al, Ga) [20]\n 4 Solid-State Rechargeable Lithium Battery [23]\n References\nOperando Analysis of All-Solid-State Lithium Ion Batteries by Using Synchrotron X-ray\n 1 Introduction\n 2 Reactions in All-Solid-State Lithium Ion Batteries (ASSLIBs)\n 3 CT-XANES Measurements of ASSLIBs\n 4 Operando Observation of Reaction Distribution in an ASSLIB Composite Electrode\n 5 Origin of Inhomogeneous Reaction in an ASSLIB Composite Electrode\n 6 Summary\n References\nFirst-Principles Simulations on Battery Materials\n 1 Introduction\n 2 Cathode/Electrolyte Interfaces\n 2.1 High Interface Resistance\n 2.2 Calculation Methods\n 2.3 Interface Structures\n 2.4 Discharged States\n 2.5 Charged States and Lithium Depletion\n 2.6 Discussions\n 3 Lithium Ion Conductors\n 3.1 Oxide Solid Electrolytes\n 3.2 Calculation Methods\n 3.3 Results\n 4 Closing Remarks\n References\nLithium-Sulfur Battery\nOutline of Li–S Battery Project\n Reference\nFundamental Properties and Solubility Toward Cathode Active Materials\n 1 Introduction\n 2 Conventional Liquid Electrolytes for Li–S Batteries\n 3 Fundamental Properties of Solvate Ionic Liquids\n 4 Solubility Toward Cathode Active Materials\n 5 The Effect of Sparingly Solvating Electrolytes on Li–S Battery Performance\n 6 Conclusions\n References\nThermodynamic and Structural Aspects of Solvate Ionic Liquid Formation\n 1 Introduction\n 2 Structural Aspects\n 3 Thermodynamic Aspects\n 4 Conclusion\n References\nProperties and Dynamics by Computer Simulation\n 1 Introduction\n 2 [Li(glyme)]+ Complexes\n 3 [Li(glyme)][TFSA] Complexes\n 4 Liquid Structures and Transport Properties of Equimolar Mixtures of Glymes and Li[TFSA]\n 5 Stability of Li[glyme]+ Complex in Equimolar Mixtures of Glymes and Li[TFSA]\n 6 Ion Exchange Dynamics\n 7 Summary\n References\nLithium Metal Anode\n 1 Lithium Metal Anode with Solvate Ionic Liquid\n 2 Fundamental Electrochemistry of the Lithium Metal Anode in Solvate Ionic Liquids\n 3 Lithium Phosphorus Oxynitride Modified Electrode in a Solvate Ionic Liquids\n 4 Design of the Interface Between the Lithium Metal Anode and Solvate Ionic Liquids\n References\nSilicon LeafPowder® Anode\n References\nElectrochemically Deposited Si–O–C Anode\n 1 Improvement of Si–O–C Anode and Its Application for LSBs\n 2 Conclusions and Perspectives\n References\nS8 Cathode\n 1 Introduction\n 2 Carbon Supports for S8\n 3 Effects of Polymer Binder in S8/Carbon Composite Cathode\n 4 Effect of Porosity of S8/Carbon Composite Cathode\n References\nS-Encapsulated Micropore Carbon Cathode\n 1 Elution Suppression Approach by Positive Electrode Material Improvement\n 2 Activated Carbon\n 3 Preparation of Microporous Activated Carbon Suitable for Sulfur Cathode\n 4 Pore Characteristics of Microporous Activated Carbon\n 5 Alkali Activation for Micropore Preparation for Activated Carbon\n 6 Microporous Carbon Confining Sulfur\n 7 Charge/discharge Behavior of Microporous Carbon Confining Sulfur\n 8 Sensitive Micropore Factors Affecting Charge/discharge Performance\n References\nLi2S Cathode\n 1 Short Review: Investigations of Li2S Cathode\n 2 Li2S Synthesis\n 2.1 The Original Experimental Method of the Li2S-graphene Composite\n 2.2 The Obstacles for the Scale-Up Synthesis\n 2.3 Investigation for a More Convenient Method\n 3 Summary and Future Prospect\n References\nLithium–Sulfur Batteries\n 1 Introduction\n 2 Cycle Lifetime of Li–S Batteries [19]\n 3 Electrolyte Design of High-Performance Li–S Batteries [22]\n 4 Summary\n References\nLi–S Battery Using Li2S Cathode\n 1 Introduction\n 2 Graphite|Electrolyte|Li2S Cells\n 3 Si|Electrolyte|Li2S Cells\n 4 Future Challenges and Prospects\n References\nScale-up Efforts\n 1 Background\n 2 Preparation of a High Sulfur Loading Cathode\n 3 Preparation of 5 Ah Cell\n 4 Preparation of Cells with 200 Wh/kg or Higher\n References\nLithium-Air Battery\nLithium–Air Battery System\n 1 Introduction\n 2 Structure and Principle of the Lithium–Air Battery\n 3 High Energy Density Cell Stack\n References\nAir Cathode\n 1 Structure of the Air Cathode of LABs\n 2 Nanocarbon Materials for the Air Cathode of LABs\n 3 A New Approach for Air Cathode Designing\n References\nCNT Electrode\n 1 Discharge Capacity of CNT Sheet Cathode\n 2 Rate and Cycle Properties of LAB Cells with CNT Sheet Cathode\n 3 Future Works of CNT Electrode for LABs\n References\nElectrolytes and General Properties of Glyme-Based Electrolytes for Rechargeable Li–Air Batteries\n 1 Introduction\n 1.1 Electrolytes for Li–Air Batteries\n 2 Requirements for LAB Electrolytes\n 3 General Properties of Glyme-Based Electrolytes\n 3.1 Ionic Conductivity and Viscosity\n 3.2 Correlation Between the Self-diffusion Coefficient and Ionic Conductivity\n 3.3 Evaluations of Li Salt Dissociation by Walden Plots and Apparent Dissociation Degree\n 3.4 Transference Number and Diffusion Radius of Li+ Ions\n 4 A Proposal for New LAB Electrolytes\n 5 Effects of O2 on Li Dissolution/Deposition at the Li Metal NE\n 6 Conclusions\n References\nElectrolytes with Redox Mediators\n 1 Problems of Battery Reactions\n 2 Effect of Redox Mediators\n 3 Mixed Anion Electrolyte\n 4 Conclusion\n References\nMg Rechargeable Battery\nNovel Mg Rechargeable Battery Cathodes: Chevrel to Spinel\n 1 Introduction\n 2 Spinel Oxides as Cathode Candidates for Mg Rechargeable Batteries\n 3 Redox Behavior of Spinel Oxides\n 4 Conclusions\n References\nNew Cathode Materials with Spinel and Layered Structures\n 1 Cathode Property and Crystal Structure of MgCo2-XMnxO4\n 2 Cathode Property and Crystal Structure of Mg1.5V1.5O4\n 3 Local Structure of MgCo2O4 Nanoparticle\n 4 Cathode Property and Crystal Structure of Li0.13Mn0.54Ni0.13Co0.13O2−δ\n References\nA Facile Wet-Process for Preparing Mg–Mn Spinel Nanoparticles as Cathodes for Rechargeable Mg-Ion Batteries\n References\nSynthesis of Structured Spinel Oxide Positive Electrodes to Improve Electrochemical Performance\n 1 Introduction\n 2 Synthesis and Characterization of Structured Spinel Oxides\n 3 Electrochemical Properties of Structured Spinel Oxides\n 4 Conclusions\n References\nHigh-Temperature Conductivity Measurements of Magnesium-Ion-Conducting Solid Oxide Using Mg Metal Electrodes\n 1 Introduction\n 2 Synthesis and Conductivity Measurements of Mg0.5−x(Zr1−xNbx)2(PO4)3 (x = 0.15) [11]\n References\nMagnesium Metal and Intermetallic Anodes\n 1 Introduction\n 2 Overview of the Electrolyte Solutions\n 3 Surface Morphologies of the Electrodeposited Magnesium\n 4 Passivation Layer and Possible SEI Layer\n 5 Intermetallic Anodes\n 6 Summary\n References\nMagnesium Batteries: Electrolyte\n References\nAl and Zn Rechargeable Batteries\nAluminum and Zinc Metal Anode Batteries\n 1 Introduction\n 2 Electrolytes for Al and Zn Metal Anode Secondary Batteries\n 3 Electrochemistry of Al and Zn Metal Anode for Secondary Batteries\n 4 Cathodes for Al and Zn Metal Anode Secondary Batteries\n 5 Concluding Remarks\n References