توضیحاتی در مورد کتاب Nonlinear Interval Optimization for Uncertain Problems
نام کتاب : Nonlinear Interval Optimization for Uncertain Problems
عنوان ترجمه شده به فارسی : بهینه سازی فاصله غیرخطی برای مسائل نامشخص
سری : Springer Tracts in Mechanical Engineering
نویسندگان : Chao Jiang, Xu Han, Huichao Xie
ناشر : Springer Singapore
سال نشر : 2020
تعداد صفحات : 291
ISBN (شابک) : 9811585458 , 9789811585456
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب به طور سیستماتیک تئوری و روش های طراحی بهینه سازی بازه های غیرخطی را مورد بحث قرار می دهد. در مرحله اول، با اتخاذ یک دیدگاه تئوری برنامهریزی ریاضی، یک مدل تبدیل ریاضی ابتکاری را برای مقابله با مسائل بهینهسازی نامشخص بازهای غیرخطی عمومی توسعه میدهد، که میتواند به طور معادل مسائل بهینهسازی نامشخص فاصله زمانی پیچیده را به مسائل بهینهسازی قطعی ساده تبدیل کند. سپس این مدل به عنوان مبنایی برای الگوریتمهای بهینهسازی نامشخص بازهای مختلف برای کاربردهای مهندسی مورد استفاده قرار میگیرد، که بازده پایین ناشی از بهینهسازی تودرتوی دولایه را بررسی میکند. علاوه بر این، این کتاب تئوری بهینهسازی بازههای غیرخطی را برای طراحی مسائل مرتبط با اهداف بهینهسازی چندگانه، رشتههای متعدد و وابستگی پارامترها گسترش میدهد و مدلهای بهینهسازی بازهای مربوطه و الگوریتمهای راهحل را ایجاد میکند. در نهایت، از مدلها و روشهای بهینهسازی نامشخص فاصله پیشنهادی برای مقابله با مشکلات عملی در مهندسی مکانیک و زمینههای مرتبط استفاده میکند و اثربخشی مدلها و روشها را نشان میدهد.
فهرست مطالب :
Contents
Abbreviations
1 Introduction
1.1 The Research Significance of Uncertain Optimization
1.2 Stochastic Programming and Fuzzy Programming
1.2.1 Stochastic Programming
1.2.2 Fuzzy Programming
1.2.3 Troubles and Difficulties in Stochastic Programming and Fuzzy Programming
1.3 Uncertain Optimization Based on Non-probabilistic Modeling
1.3.1 Convex Model Optimization
1.3.2 Interval Optimization
1.4 Current Problems in Interval Optimization
1.5 The Research Target and Framework of This Book
References
2 The Basic Principles of Interval Analysis
2.1 The Origin of Interval Number
2.2 The Basic Conceptions of Interval Mathematics
2.3 The Basic Arithmetic Operations of Interval Number
2.4 The Overestimation Problem in Interval Arithmetic
2.5 Summary
References
3 Mathematical Transformation Models of Nonlinear Interval Optimization
3.1 The Description of a General Nonlinear Interval Optimization Problem
3.2 Possibility Degree of Interval Number and Transformation of Uncertain Constraints
3.2.1 An Improved Possibility Degree of Interval Number
3.2.2 Transformation of Uncertain Constraints Based on Possibility Degree of Interval Number
3.3 The Mathematic Transformation Model Based on Order Relation of Interval Number
3.3.1 Order Relation of Interval Number and Transformation of Uncertain Objective Function
3.3.2 The Transformed Deterministic Optimization
3.4 The Mathematic Transformation Model Based on Possibility Degree of Interval Number
3.5 A Two-Layer Optimization Algorithm Based on IP-GA
3.5.1 A Brief Introduction of IP-GA
3.5.2 Procedure of the Algorithm
3.6 Numerical Example and Discussions
3.6.1 By Using the Mathematic Transformation Model Based on Order Relation of Interval Number
3.6.2 By Using the Mathematic Transformation Model Based on Possibility Degree of Interval Number
3.7 Summary
References
4 Interval Optimization Based on Hybrid Optimization Algorithm
4.1 The Nonlinear Interval Optimization with Uniformly Expressed Constraints
4.2 The ANN Model
4.3 Construction of the Hybrid Optimization Algorithms
4.3.1 The Hybrid Optimization Algorithm with Multiple Networks
4.3.2 The Hybrid Optimization Algorithm with a Single Network
4.4 Engineering Applications
4.4.1 The Variable Binder Force Optimization in U-Shaped Forming
4.4.2 The Locator Optimization in Welding Fixture
4.5 Summary
References
5 Interval Optimization Based on Interval Structural Analysis
5.1 Interval Set Theory and Interval Extension
5.2 The Interval Structural Analysis Method
5.2.1 Interval Structural Analysis for Small Uncertainties
5.2.2 Interval Structural Analysis for Large Uncertainties
5.2.3 Numerical Example and Discussions
5.3 An Efficient Interval Optimization Method
5.3.1 Algorithm Description
5.3.2 Engineering Applications
5.4 Summary
References
6 Interval Optimization Based on Sequential Linear Programming
6.1 Formulation of the Algorithm
6.1.1 Solution of the Linear Interval Optimization Problems
6.1.2 Iteration Mechanism
6.1.3 Calculation of the Intervals of the Actual Objective Function and Constraints in Each Iteration
6.2 Testing of the Proposed Method
6.2.1 Test Function 1
6.2.2 Test Function 2
6.3 Discussions on Convergence of the Proposed Method
6.4 Application to the Design of a Vehicle Occupant Restraint System
6.5 Summary
References
7 Interval Optimization Based on Approximation Models
7.1 Nonlinear Interval Optimization Based on the Approximation Model Management Strategy
7.1.1 Quadratic Polynomial Response Surface
7.1.2 Design of Experiment Method
7.1.3 The Method by Using the Transformation Model Based on Order Relation of Interval Number
7.1.4 The Method by Using the Transformation Model Based on Possibility Degree of Interval Number
7.1.5 Test Functions
7.1.6 Discussions on the Convergence
7.1.7 Engineering Applications
7.2 Nonlinear Interval Optimization Based on the Local-Densifying Approximation Technique
7.2.1 Radial Basis Function
7.2.2 Algorithm Flow
7.2.3 Test Functions
7.2.4 Application to the Crashworthiness Design of a Thin-Walled Beam of Vehicle Body
7.3 Summary
References
8 Interval Multidisciplinary Design Optimization
8.1 An Interval MDO Model
8.2 Decoupling the Multidisciplinary Analysis
8.3 Transformation of the Interval Optimization Problem
8.4 Numerical Example and Engineering Application
8.4.1 Numerical Example
8.4.2 Application to the Aerial Camera Design
8.5 Summary
References
9 A New Type of Possibility Degree of Interval Number and Its Application in Interval Optimization
9.1 Three Existing Possibility Degree Models of Interval Number and Their Disadvantages
9.2 The Reliability-Based Possibility Degree of Interval Number
9.3 Interval Optimization Based on RPDI
9.3.1 Linear Interval Optimization
9.3.2 Nonlinear Interval Optimization
9.4 Numerical Example and Engineering Applications
9.4.1 Numerical Example
9.4.2 Application to a 10-bar Truss
9.4.3 Application to the Design of an Automobile Frame
9.5 Summary
References
10 Interval Optimization Considering the Correlation of Parameters
10.1 Multidimensional Parallelepiped Interval Model
10.1.1 Two-Dimensional Problem
10.1.2 Multidimensional Problem
10.1.3 Construction of the Uncertainty Domain
10.2 Interval Optimization Based on the Multidimensional Parallelepiped Interval Model
10.2.1 Affine Coordinate Transformation
10.2.2 Conversion to a Deterministic Optimization
10.3 Numerical Example and Engineering Applications
10.3.1 Numerical Example
10.3.2 Application to a 25-bar Truss
10.3.3 Application to the Crashworthiness Design of Vehicle Side Impact
10.4 Summary
References
11 Interval Multi-objective Optimization
11.1 An Interval Multi-objective Optimization Model
11.2 Conversion to a Deterministic Multi-objective Optimization
11.3 Algorithm Flow
11.4 Numerical Example and Engineering Application
11.4.1 Numerical Example
11.4.2 Application to the Design of an Automobile Frame
11.5 Summary
References
12 Interval Optimization Considering Tolerance Design
12.1 An Interval Optimization Model Considering Tolerance Design
12.2 Conversion to a Deterministic Optimization
12.3 Numerical Example and Engineering Applications
12.3.1 Numerical Example
12.3.2 Application to a Cantilever Beam
12.3.3 Application to the Crashworthiness Design of Vehicle Side Impact
12.4 Summary
References
13 Interval Differential Evolution Algorithm
13.1 Fundamentals of the Differential Evolution Algorithm
13.1.1 Initial Population Generation Strategy
13.1.2 Mutation Strategy
13.1.3 Crossover Strategy
13.1.4 Selection Strategy
13.2 Formulation of the Interval Differential Evolution Algorithm
13.2.1 Satisfaction Value of Interval Possibility Degree and Treatment of Uncertain Constraints
13.2.2 Selection Strategy Based on an Interval Preferential Rule
13.2.3 Algorithm Flow
13.3 Numerical Examples and Engineering Application
13.3.1 Numerical Examples
13.3.2 Application to the Design of Augmented Reality Glasses
13.4 Summary
Appendix: Numerical Examples
References
توضیحاتی در مورد کتاب به زبان اصلی :
This book systematically discusses nonlinear interval optimization design theory and methods. Firstly, adopting a mathematical programming theory perspective, it develops an innovative mathematical transformation model to deal with general nonlinear interval uncertain optimization problems, which is able to equivalently convert complex interval uncertain optimization problems to simple deterministic optimization problems. This model is then used as the basis for various interval uncertain optimization algorithms for engineering applications, which address the low efficiency caused by double-layer nested optimization. Further, the book extends the nonlinear interval optimization theory to design problems associated with multiple optimization objectives, multiple disciplines, and parameter dependence, and establishes the corresponding interval optimization models and solution algorithms. Lastly, it uses the proposed interval uncertain optimization models and methods to deal with practical problems in mechanical engineering and related fields, demonstrating the effectiveness of the models and methods.