Nonlinear Optics: Phenomena, Materials and Devices

دانلود کتاب Nonlinear Optics: Phenomena, Materials and Devices

33000 تومان موجود

کتاب اپتیک غیرخطی: پدیده ها، مواد و دستگاه ها نسخه زبان اصلی

دانلود کتاب اپتیک غیرخطی: پدیده ها، مواد و دستگاه ها بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 7


توضیحاتی در مورد کتاب Nonlinear Optics: Phenomena, Materials and Devices

نام کتاب : Nonlinear Optics: Phenomena, Materials and Devices
ویرایش : 1
عنوان ترجمه شده به فارسی : اپتیک غیرخطی: پدیده ها، مواد و دستگاه ها
سری :
نویسندگان : ,
ناشر : Wiley
سال نشر : 2012
تعداد صفحات : 490
ISBN (شابک) : 1118072723 , 9781118072721
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 10 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Nonlinear Optics: Phenomena, Materials, and Devices
CONTENTS
PREFACE
1. Introduction
1.1 What is Nonlinear Optics and What is it Good for?
1.2 Notation
1.3 Classical Nonlinear Optics Expansion
1.4 Simple Model: Electron on a Spring and its Application to Linear Optics
1.5 Local Field Correction
Problems
Suggested Further Reading
PART A: SECOND-ORDER PHENOMENA
2. Second-Order Susceptibility and Nonlinear Coupled Wave Equations
2.1 Anharmonic Oscillator Derivation of Second-Order Susceptibilities
2.2 Input Eigenmodes, Permutation Symmetry, and Properties of χ(2)
2.3 Slowly Varying Envelope Approximation
2.4 Coupled Wave Equations
2.4.1 Type 1 SHG: Single-Eigenmode Input
2.4.2 Type 2 SHG: Two-Eigenmode Input
2.4.3 Sum and Difference Frequency Generation
2.5 Manley–Rowe Relations and Energy Conservation
Problems
Suggested Further Reading
3. Optimization and Limitations of Second-Order Parametric Processes
3.1 Wave-Vector Matching
3.1.1 Birefringent Wave-Vector Matching: Uniaxial Crystals
3.1.1.1 Type 1 Phase Match
3.1.1.2 Type 2 Wave-Vector Match.
3.1.2 Quasi-Phase Matching
3.1.3 Walk-Off
3.1.4 Angular Bandwidth
3.1.4.1 Birefringent Wave-Vector-Matched Uniaxial Crystals
3.1.4.2 Quasi-Phase-Matched Crystals
3.1.5 Noncollinear Wave-Vector Match
3.1.6 Biaxial Crystals
3.2 Optimizing deff(22)
3.3 Numerical Examples
Problems
References
Suggested Further Reading
4. Solutions for Plane-Wave Parametric Conversion Processes
4.1 Solutions of the Type 1 SHG Coupled Wave Equations
4.1.1 SHG with Wave-Vector Match (Δs = 0)
4.1.2 SHG with Wave-Vector Mismatch (Δs 6 ≠ 0)
4.1.3 Arbitrary Inputs with Δs = 0
4.2 Solutions of the Three-Wave Coupled Equations
4.2.1 Sum Frequency Generation
4.2.2 Difference Frequency Generation
4.3 Characteristic Lengths
4.4 Nonlinear Modes
4.4.1 Type 1 SHG
4.4.2 Type 2 SHG
Problems
References
Suggested Further Reading
5. Second Harmonic Generation with Finite Beams and Applications
5.1 SHG with Gaussian Beams
5.1.1 Case I: L « z0
5.1.2 Case II: L ≈ 2z0(ω) (Optimum Conversion)
5.1.3 Pulsed Fundamental Finite Beam
5.1.4 Beam Walk-Off in Space
5.1.5 Examples of Finite Beam SHG
5.2 Unique and Performance-Enhanced Applications of Periodically Poled LiNbO3 (PPLN)
5.2.1 Tunable Frequency Conversion
5.2.2 Enhanced Frequency Bandwidth at Doubled Frequencies
5.2.3 Doubling of Ultrashort Pulses
Problems
References
Suggested Further Reading
6. Three-Wave Mixing, Optical Amplifiers, and Generators
6.1 Three-Wave Mixing Processes
6.2 Manley–Rowe Relations
6.3 Sum Frequency Generation
6.3.1 Low Depletion Limit with Wave-Vector Mismatch
6.3.2 Strong Interaction Limit with Depletion
6.4 Optical Parametric Amplifiers
6.4.1 Undepleted Pump Approximation (ε (z, ωc) = constant)
6.4.2 Strong Interaction Limit
6.5 Optical Parametric Oscillator
6.5.1 Doubly Resonant Cavity
6.5.2 Singly Resonant Cavity
6.5.3 OPO Power Output
6.5.4 Frequency Tuning of OPOs
6.6 Mid-Infrared Quasi-Phase Matching Parametric Devices
6.6.1 Multifrequency Outputs
6.6.2 Comb Generation
Problems
References
Selected Further Reading
7.χ(2) Materials and Their Characterization
7.1 Survey of Materials
7.2 Oxide-Based Dielectric Crystals
7.2.1 β-BaB2O4 (Trigonal 3m Crystal)
7.2.2 KTiOPO4 (Orthorhombic mm2 Crystal)
7.3 Organic Materials
7.3.1 Charge Transfer Molecules
7.3.2 Examples of Single Crystal Organics
7.3.2.1 N-4-Nitrophenyl-L-prolinol (Monoclinic 2 Crystal)
7.3.2.2 4-N,N-Dimethylamino-4-N-methyl-stilbazolium 2,4,6-Trimethylbenzenesulfonate (Monoclinic m Crystal)
7.3.2.3 Poled Polymers
7.4 Measurement Techniques
7.4.1 The Kurtz Method
7.4.2 The Maker Fringe Method
Appendix 7.1: Quantum Mechanical Model for Charge Transfer Molecular Nonlinearities
References
Suggested Further Reading
PART B: NONLINEAR SUSCEPTIBILITIES
8. Second- and Third-Order Susceptibilities: Quantum Mechanical Formulation
8.1 Perturbation Theory of Field Interaction with Molecules
8.1.1 Field–Molecule Interaction
8.1.2 Electric Dipole Interaction
8.1.2.1 First Interaction of the Molecules with the Field
8.1.2.2 Second Interaction of the Molecules with the Field
8.2 Optical Susceptibilities
8.2.1 Linear Susceptibility
8.2.1.1 Local Field Correction
8.2.2 Second-Order Susceptibility (Three ζ2 Terms)
8.2.2.1 Local Field Correction for Second-Order Interactions
8.2.2.2 Example of Type 1 Second Harmonic Generation
8.2.2.3 Example of Type 2 Sum Frequency Generation
8.2.2.4 Example of Divergence
8.2.2.5 Divergence Removed
8.2.2.6 Centrosymmetric versus Noncentrosymmetric Molecules and Crystals
8.2.2.7 Nonresonant Limit (ω → 0)
8.2.3 Third-Order Susceptibility
8.2.3.1 Symmetry Properties of Third-Order Susceptibilities
8.2.3.2 Formalism for General Third-Order Polarization
8.2.3.3 Examples of Third-Order Processes
8.2.3.4 Susceptibilities in the Nonresonant Limit (ω → 0, ωng τng » 1)
Appendix 8.1: χ(3)ijkl Symmetry Properties for Different Crystal Classes
A.8.1.1 Triclinic
A.8.1.2 Monoclinic
A.8.1.3 Orthorhombic
A.8.1.4 Tetragonal
A.8.1.5 Cubic
A.8.1.6 Trigonal
A.8.1.7 Hexagonal
Problems
Reference
Suggested Further Reading
9. Molecular Nonlinear Optics
9.1 Two-Level Model
9.1.1 Second-Order Susceptibilities
9.1.1.1 Example of Sum Harmonic Generation in a Periodically Poled Crystal
9.1.1.2 Example of Sum Frequency Generation in Periodically Poled Lithium Niobate
9.1.2 Third-Order Susceptibilities
9.1.2.1 Third Harmonic Generation
9.1.2.2 Nonlinear Refraction andAbsorption
9.1.3 First-Order Effect on χ(3) of Population Changes in Two-Level Systems
9.1.4 Summary for the Two-Level Model
9.2 Symmetric Molecules
9.2.1 General SOS Model
9.2.2 Three-Level Model
9.3 Density Matrix Formalism
Appendix 9.1: Two-Level Model for Asymmetric Molecules—Exact Solution
A.9.1.1 Summary of General Formulas
A.9.1.2 Numerical Calculations Near Resonances
A.9.1.2.1 One-Photon Resonance
A.9.1.2.2 Two-Photon Resonance
Appendix 9.2: Three-Level Model for Symmetric Molecules—Exact Solution
Problems
References
Suggested Further Reading
PART C: THIRD-ORDER PHENOMENA
10. Kerr Nonlinear Absorption and Refraction
10.1 Nonlinear Absorption
10.1.1 Single-Beam Input
10.1.1.1 Two-Level Model
10.1.1.2 Three-Level Model
10.1.2 Two-Beam Input (Nondegenerate Case, Two Input Frequencies: ωa and ωb)
10.1.3 Two Orthogonally Polarized Beam Input: Equal or Unequal Frequencies
10.2 Nonlinear Refraction
10.2.1 Single-Beam Input
10.2.2 Two-Beam Input
10.2.2.1 Copolarized Beams (ωa ≠ ωb) and (ωa = ωb, not Codirectional, i.e., Different Eigenmodes)
10.2.2.2 Orthogonally Polarized Beams
10.3 Useful NLR Formulas and Examples (Isotropic Media)
10.3.1 Two-Frequency Input (Three Eigenmodes with Frequencies: ωa,ωb and -ωb)
10.3.2 Single-Frequency Beam Input (Two Eigenmodes)
Problems
Suggested Further Reading
11. Condensed Matter Third-Order Nonlinearities due to Electronic Transitions
11.1 Device-Based Nonlinear Material Figures of Merit
11.2 Local Versus Nonlocal Nonlinearities in Space and Time
11.2.1 Nonlocality in Space
11.2.2 Nonlocality in Time
11.3 Survey of Nonlinear Refraction and Absorption Measurements
11.4 Electronic Nonlinearities Involving Discrete States
11.4.1 Nonlinearities in Gases
11.4.2 Linear Molecules and Polymers
11.4.2.1 Conjugated Molecules and Polymers
11.4.2.2 Symmetric D-A-D Dyes
11.4.3 Excited-State Absorption and Reverse Saturable Absorption
11.5 Overview of Semiconductor Nonlinearities
11.5.1 Charge Carrier-Related Nonlinearities
11.5.1.1 Bandgap Renormalization (Band Filling)
11.5.1.2 Exciton Bleaching
11.5.1.3 Active Nonlinearities (with Gain).
11.5.1.4 Off Bandgap Charge Carrier Nonlinearities, hω > Egap
11.5.2 Semiconductor Response for Photon Energies Below the Bandgap
11.5.3 Quantum Confined Semiconductors
11.5.3.1 Multiple Quantum Wells (MQW).
11.5.3.2 Quantum Dots
11.6 Glass Nonlinearities
Appendix 11.1: Expressions for the Kerr, Raman, and Quadratic Stark Effects
A.11.1.1 Nonlinear Absorption
A.11.1.2 Nonlinear Refraction
Problems
References
Suggested Further Reading
12. Miscellaneous Third-Order Nonlinearities
12.1 Molecular Reorientation Effects in Liquids and Liquid Crystals
12.1.1 Single Molecule Reorientation
12.1.2 Liquid Crystals
12.1.2.1 General Optical Properties of Liquid Crystals
12.1.2.2 Liquid Crystals Nonlinear Optics: Reorientation Effects
12.1.2.3 Giant Orientational Optical Nonlinearities in Doped Nematic Liquid Crystals
12.1.2.4 Thermal Nonlinearities
12.1.2.5 Summary of Liquid Crystal Nonlinear Refractive Index Coefficients
12.2 Photorefractive Nonlinearities
12.2.1 Screening Nonlinearity
12.2.1.1 No Applied DC Field
12.2.1.2 Screening Nonlinearity: Applied DC Bias Field
12.2.2 Photovoltaic Nonlinearity
12.3 Nuclear (Vibrational) Contributions to n2||( ω; ω)
12.4 Electrostriction
12.5 Thermo-Optic Effect
12.6 χ(3) via Cascaded χ(2) Nonlinear Processes: Nonlocal
Appendix 12.1: Spontaneous Raman Scattering
A.12.1.1 Single Noninteracting Molecules
Problems
References
Suggested Further Reading
13. Techniques for Measuring Third-Order Nonlinearities
13.1 Z-Scan
13.1.1 Nonlinear Absorption: Open Aperture (Thin Sample)
13.1.2 Nonlinear Refraction: Closed Aperture
13.1.3 Nonlinear Absorption and Refraction Together
13.1.4 Z-Scan Solution Measurements
13.2 Third Harmonic Generation
13.3 Optical Kerr Effect Measurements
13.4 Nonlinear Optical Interferometry
13.5 Degenerate Four-Wave Mixing
Problems
References
Suggested Further Reading
14. Ramifications and Applications of Nonlinear Refraction
14.1 Self-Focusing and Defocusing of Beams
14.1.1 Self-Focusing and Defocusing of Beams: Kerr Nonlinearities
14.1.1.1 External Self-Action: Thin Sample
14.1.1.2 External Self-Action: Thick Sample
14.1.2 Other Nonlinearities
14.2 Self-Phase Modulation and Spectral Broadening in Time
14.3 Instabilities
14.3.1 Instabilities in Space
14.3.2 Instabilities in Time
14.3.2.1 GVD and Pulse Broadening
14.3.2.2 Pulse Instabilities in Time
14.4 Solitons (Nonlinear Modes)
14.4.1 Spatial Solitons
14.4.2 Temporal Solitons (Temporal Analog of Spatial Solitons)
14.4.3 Dark Solitons
14.4.4 Solitons in Space and Time (Optical Bullets)
14.5 Optical Bistability
14.6 All-Optical Signal Processing and Switching
14.6.1 Linear Coupler
14.6.2 Nonlinear Directional Coupler
Problems
References
Suggested Further Reading
15. Multiwave Mixing
15.1 Degenerate Four-Wave Mixing
15.1.1 Beam Geometry and Nonlinear Polarization
15.1.2 Grating Model
15.1.3 D4WM Field Solutions
15.1.4 Manley–Rowe Relations
15.1.5 Wave-Vector Mismatch
15.1.6 Linear Absorption
15.1.7 Material Characterization via D4WM
15.1.8 Complex χ(3)
15.1.9 D4WM Including NLR
15.2 Degenerate Three-Wave Mixing
15.3 Nondegenerate Wave Mixing
15.3.1 All-Optical Nondegenerate Wave Mixing
15.3.1.1 Nondegenerate Two-Photon Vibrational Resonance
15.3.1.2 Nonlinear Raman Spectroscopy
Problems
Reference
Suggested Further Reading
16. Stimulated Scattering
16.1 Stimulated Raman Scattering
16.1.1 Raman Amplification
16.1.1.1 Optimum Conversion Efficiency
16.1.1.2 Raman Amplification Properties: Attenuation, Saturation, Pump Depletion, Threshold
16.1.1.3 Raman Amplification—Pulses
16.1.1.4 Stimulated Raman Gain in Glasses
16.1.2 Raman Laser
16.1.3 Coherent Anti-Stokes Beam Generation
16.2 Stimulated Brillouin Scattering
16.2.1 Equation of Motion for Sound Waves in a Gas or Liquid and SVEA
16.2.2 Power Flow (Toward Manley–Rowe)
16.2.3 Exponential Growth
16.2.4 SBS Threshold
16.2.5 Pulsed Pump and Stokes Beams
Problems
References
Suggested Further Reading
17. Ultrafast and Ultrahigh Intensity Processes
17.1 Extended Nonlinear Wave Equation
17.2 Formalism for Ultrafast Fiber Nonlinear Optics
17.3 Examples of Nonlinear Optics in Fibers
17.3.1 Nondegenerate Four-Wave Mixing
17.3.2 Pulse Self-Steepening
17.3.3 Soliton Self-Frequency Shift
17.3.4 Continuum Generation
17.4 High Harmonic Generation
References
Suggested Further Reading
Appendix: Units, Notation, and Physical Constants
A.1 Units of Third-Order Nonlinearity
A.2 Values of Useful Constants
Reference
INDEX




پست ها تصادفی