Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace

دانلود کتاب Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace

60000 تومان موجود

کتاب موج غیرخطی و ساختارهای پلاسما در جغرافیای شفق و زیرزمینی نسخه زبان اصلی

دانلود کتاب موج غیرخطی و ساختارهای پلاسما در جغرافیای شفق و زیرزمینی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace

نام کتاب : Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace
ویرایش : 1
عنوان ترجمه شده به فارسی : موج غیرخطی و ساختارهای پلاسما در جغرافیای شفق و زیرزمینی
سری :
نویسندگان : ,
ناشر : Elsevier
سال نشر : 2021
تعداد صفحات : 625
ISBN (شابک) : 0128207604 , 9780128207604
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 65 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace
Copyright
Preface
1. Introduction: near-Earth space environment
1.1 Bow shock
1.2 Magnetosheath
1.3 Polar cusps
1.4 Magnetosphere
1.4.1 Magnetotail
1.4.2 Plasmasphere
1.4.3 Radiation belts
1.4.4 Ring current
1.5 Ionosphere
1.5.1 Ionospheric regions
1.5.2 Ionospheric conductivities
1.6 Electric currents
1.7 Aurora and auroral oval
1.8 Magnetosphere-ionosphere (MI) coupling
References
2. Plasma waves and instabilities
2.1. Plasma waves
2.1.1 Background
2.1.1.1 Plasma: the fourth state of matter
2.1.1.2 Maxwell\'s equations and dielectric permittivity
2.1.1.3 Plane waves
2.1.1.4 Dispersion and wave equations
2.1.1.5 Hydrodynamic approach
2.1.1.6 Kinetic approach
2.1.2 Drift in static magnetic fields
2.1.2.1 Cyclotron rotation
2.1.2.2 E × B drift
2.1.2.3 Polarization and Pedersen drift
2.1.2.4 Guiding center
2.1.2.5 Gradient-curvature drift
2.1.3 Cold plasma
2.1.3.1 Unmagnetized plasma
2.1.3.2 Magnetized plasma
High- and low-frequency potential oscillations
Electromagnetic modes
2.1.4 Warm plasma waves
2.1.4.1 Unmagnetized plasma
Langmuir waves
Ion sound waves
Collisional damping and wave energy
Resonant interaction and Landau damping
2.1.4.2 Warm magnetized plasma
Cyclotron resonances
Upper hybrid and electron Bernstein waves
Low-frequency waves
2.1.5 Wave propagation in inhomogeneous plasmas
2.1.5.1 Wave–particle analogy
2.1.5.2 Unmagnetized plasma layer
Oblique incidence
2.1.5.3 Magnetized plasma layer
Normal incidence
Oblique incidence
2.1.6 Magnetohydrodynamic waves
2.1.6.1 MHD equations
2.1.6.2 Equations of ideal MHD
Alfvén waves
Magnetosonic waves
2.1.6.3 Dispersive Alfvén waves
Inertial Alfvén waves
Kinetic Alfvén waves
2.1.7 Appendix A2.1: dielectric permittivity of a magnetized plasma
2.1.7.1 Potential waves
2.1.7.2 Bi-Maxwellian distribution
High-frequency limit
“Ring” or “beam of oscillators”
Drifting distribution
Low-frequency limit
Perpendicular propagation
Imaginary part of the dielectric permittivity
2.1.7.3 Electromagnetic waves
Dielectric permittivity tensor
Parallel propagation
Perpendicular propagation
Bernstein and extraordinary modes
Tensor for a Maxwellian distribution
2.1.7.4 Useful identities
Bessel functions
Integrals
Limits
References
Recommended reading
2.2. Plasma instabilities
2.2.1 Introduction: nonequilibrium plasma
2.2.2 Unmagnetized plasma
2.2.2.1 Cold electron beam instability
2.2.2.2 The Buneman instability
Negative energy waves
2.2.2.3 Kinetic instabilities: inverse Landau damping
Electron “bump-on-tail” instability
Inhomogeneity effect
Ion sound instability
2.2.3 Magnetized plasma
2.2.3.1 Cold parallel electron beam
2.2.3.2 The Buneman instability in the magnetic field
2.2.3.3 Electron “ring/oscillators” instability
2.2.3.4 Cold perpendicular ion beam
Modified two-stream instability
Ion “ring/oscillators” instability
2.2.3.5 Electron “bump-on-tail” instability in the magnetic field
2.2.3.6 Field-aligned current-driven instability
2.2.3.7 Perpendicular ion “bump-on-tail” instability
2.2.3.8 Nonequilibrium distributions of perpendicular velocities
Warm electron ring
Anisotropic electron population
Anisotropic electron beam
2.2.4 Interchange instabilities
2.2.4.1 Rayleigh–Taylor instability
2.2.4.2 Gradient-drift instability
2.2.5 Current convective instability
2.2.6 Drift instabilities
2.2.6.1 Drift waves
2.2.6.2 “Weak” and “strong” inhomogeneity
2.2.6.3 Dissipative drift instability
2.2.6.4 Kinetic drift instability
Cold ions
Warm ions
Unmagnetized ions
2.2.6.5 Temperature gradient instability
2.2.6.6 Temperature-gradient drift instability
Dissipative TGI
Collisionless TGI
2.2.7 The Farley–Buneman instability
2.2.8 Appendix A2.2: Dielectric permittivity of an inhomogeneous plasma
2.2.8.1 Integrals of motion
2.2.8.2 Drifting distribution
2.2.8.3 Low frequencies
2.2.8.4 High frequencies
2.2.8.5 Perpendicular propagation
References
Recommended reading
2.3. Nonlinear interactions
2.3.1 Introduction
2.3.2 Resonant wave–particle interactions
2.3.2.1 One mode interaction
2.3.2.2 Nonlinear regime of Landau damping
2.3.2.3 Collisions and plasma inhomogeneity effects
2.3.2.4 Saturation of the hydrodynamic beam instability
2.3.2.5 Quasilinear theory
2.3.2.6 Initial problem
2.3.2.7 Boundary problem
2.3.2.8 Electron collisions effect
2.3.2.9 Inhomogeneity effect
2.3.3 Weakly nonlinear wave interactions
2.3.3.1 Induced scattering
2.3.3.2 Inverse cascade
2.3.3.3 Kinetic wave equation
2.3.3.4 Wave–wave interactions
2.3.3.5 Matching conditions
2.3.3.6 Ponderomotive force
2.3.3.7 Zakharov equations
2.3.3.8 Parametric decay instability
2.3.3.9 PDI in an inhomogeneous plasma
2.3.3.10 Modified decay instability
2.3.3.11 Modulational instability
2.3.3.12 Weakly magnetized plasma
2.3.3.13 Upper hybrid parametric decay
2.3.3.14 Lower hybrid parametric processes
2.3.3.15 Nonlinear saturation of weakly turbulent processes
2.3.4 Strong turbulence
2.3.4.1 Langmuir collapse
2.3.4.2 Strong Langmuir turbulence
2.3.4.3 Conversion (scattering) on ion density fluctuations
2.3.4.4 Effect of collisional damping
2.3.4.5 Acceleration of plasma electrons
2.3.4.6 Magnetized Langmuir collapse
2.3.4.7 Strong lower hybrid turbulence
2.3.5 Nonlinear inertial Alfvén waves
2.3.5.1 Nonlinear equations
2.3.5.2 Parametric decay of inertial Alfvén waves
2.3.5.3 Electrostatic convective cells
2.3.6 Appendix A2.3: useful formulas
2.3.6.1 Elliptic integrals
2.3.6.2 Nonlinear unit-mass pendulum
2.3.6.3 Averaging over statistical ensemble
References
3. Auroral geospace
3.1. Earthbound injections in the magnetotail
3.2. Substorms
3.3. Multiscale aurora: structure and dynamics
3.4. Alfvénic aurora
4. Nonlinear effects in natural and artificial aurora
4.1. Energetic electron impact on the upper atmosphere
4.1.1 Auroral emissions
4.1.2 “Classical” aurora
4.1.2.1 Energy deposition
4.1.2.2 Degradation spectrum
4.1.2.3 SPA plasma composition
4.1.3 Enhanced Aurora
4.1.3.1 Luminosity/ionization profiles
4.1.3.2 Spectra of Enhanced Aurora and suprathermal electrons
4.1.3.3 Plasma composition
References
4.2. Artificial aurora
4.2.1 Electron beam experiments
4.2.1.1 Near-rocket glow
4.2.1.2 Suprathermal electrons
4.2.1.3 VHF electromagnetic emissions
4.2.1.4 Prompt electron echoes
4.2.1.5 Artificial aurora rays
4.2.2 High-power HF heating experiments
4.2.2.1 Descending artificial airglow
4.2.2.2 Suprathermal electrons
4.2.2.3 Daytime artificial ionization layers
References
4.3. Theory of Artificial and Enhanced Aurora
4.3.1 Electron beam interaction with the ionosphere
4.3.1.1 Collisionless relaxation of electron beams
4.3.1.2 Collisional effects in the beam-driven Strong Langmuir turbulence
Heating and acceleration of plasma electrons
Collision integral
Accelerated electron distribution
Ionization rate
Inelastic loss coefficient
Plasma-turbulence layer
4.3.2 Beam-plasma discharge in artificial aurora experiments
4.3.2.1 BPD basics
4.3.2.2 BPD ignition in the ionosphere
Instability of a bounded electron beam
Instability saturation
Fast electron heating
Drift of the beam guiding center
4.3.2.3 Intermittent BPI
Prompt electron “echoes”
BPD during the off period
Heat flux-driven instability
4.3.2.4 “Quasi-stationary” BPD
Cold beam
“Warm” beam
Optical emission from the near-rocket glow
Radioemission from the near-rocket region
4.3.3 Theory of descending artificial plasma layers
4.3.3.1 Ionizing wave via HF-driven SLT acceleration
Coexistence of the WT and SLT regimes
Numerical simulation of descending layers
SLT and mitigation of anomalous absorption near the upper hybrid resonance
4.3.4 SLT signatures in the auroral ionosphere
4.3.5 Thermal electron distribution in the F-region
References
4.4. E/F-region turbulent heating
4.4.1 Langmuir turbulence and FAC-driven instability
4.4.2 Energy balance in weakly ionized ionosphere
4.4.3 The Farley–Buneman instability effects
4.4.4 Plasma chemistry in the heated E-Region
Nonequilibrium species
References
5. Subauroral geospace
5.1. Subauroral flows
5.2. Subauroral ULF wave structures
5.3. Subauroral arcs
5.4. Generation and dynamics of subauroral VLF whistlers
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z




پست ها تصادفی