Numerical Approximation of Ordinary Differential Problems. From Deterministic to Stochastic Numerical Methods

دانلود کتاب Numerical Approximation of Ordinary Differential Problems. From Deterministic to Stochastic Numerical Methods

46000 تومان موجود

کتاب تقریب عددی مسائل دیفرانسیل معمولی. از روش‌های عددی قطعی تا تصادفی نسخه زبان اصلی

دانلود کتاب تقریب عددی مسائل دیفرانسیل معمولی. از روش‌های عددی قطعی تا تصادفی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 3


توضیحاتی در مورد کتاب Numerical Approximation of Ordinary Differential Problems. From Deterministic to Stochastic Numerical Methods

نام کتاب : Numerical Approximation of Ordinary Differential Problems. From Deterministic to Stochastic Numerical Methods
عنوان ترجمه شده به فارسی : تقریب عددی مسائل دیفرانسیل معمولی. از روش‌های عددی قطعی تا تصادفی
سری : UNITEXT. La Matematica per il 3. +2, Volume 148
نویسندگان :
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 394
ISBN (شابک) : 9783031313424 , 9783031313431
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Contents
1 Ordinary Differential Equations
1.1 Initial Value Problems
1.2 Well-Posedness
1.3 Dissipative Problems
1.4 Conservative Problems
1.5 Stability of Solutions
1.6 Exercises
2 Discretization of the Problem
2.1 Domain Discretization
2.2 Difference Equations: The Discrete Counterpart of Differential Equations
2.2.1 Linear Difference Equations
2.2.2 Homogeneous Case
2.2.3 Inhomogeneous Case
2.3 Step-by-Step Schemes
2.4 A Theory of One-Step Methods
2.4.1 Consistency
2.4.2 Zero-Stability
2.4.3 Convergence
2.5 Handling Implicitness
2.6 Exercises
3 Linear Multistep Methods
3.1 The Principle of Multistep Numerical Integration
3.2 Handling Implicitness by Fixed Point Iterations
3.3 Consistency and Order Conditions
3.4 Zero-Stability
3.5 Convergence
3.6 Exercises
4 Runge-Kutta Methods
4.1 Genesis and Formulation of Runge-Kutta Methods
4.2 Butcher Theory of Order
4.2.1 Rooted Trees
4.2.2 Elementary Differentials
4.2.3 B-Series
4.2.4 Elementary Weights
4.2.5 Order Conditions
4.3 Explicit Methods
4.4 Fully Implicit Methods
4.4.1 Gauss Methods
4.4.2 Radau Methods
4.4.3 Lobatto Methods
4.5 Collocation Methods
4.6 Exercises
5 Multivalue Methods
5.1 Multivalue Numerical Dynamics
5.2 General Linear Methods Representation
5.3 Convergence Analysis
5.4 Two-Step Runge-Kutta Methods
5.5 Dense Output Multivalue Methods
5.6 Exercises
6 Linear Stability
6.1 Dahlquist Test Equation
6.2 Absolute Stability of Linear Multistep Methods
6.3 Absolute Stability of Runge-Kutta Methods
6.4 Absolute Stability of Multivalue Methods
6.5 Boundary Locus
6.6 Unbounded Stability Regions
6.6.1 A-Stability
6.6.2 Padé Approximations
6.6.3 L-Stability
6.7 Order Stars
6.8 Exercises
7 Stiff Problems
7.1 Looking for a Definition
7.2 Prothero-Robinson Analysis
7.3 Order Reduction of Runge-Kutta Methods
7.4 Discretizations Free from Order Reduction
7.4.1 Two-Step Collocation Methods
7.4.2 Almost Collocation Methods
7.4.3 Multivalue Collocation Methods Free from Order Reduction
7.5 Stiffly-Stable Methods: Backward Differentiation Formulae
7.6 Principles of Adaptive Integration
7.6.1 Predictor-Corrector Schemes
7.6.2 Stepsize Control Strategies
7.6.3 Error Estimation for Runge-Kutta Methods
7.6.4 Newton Iterations for Fully Implicit Runge-Kutta Methods
7.7 Exercises
8 Geometric Numerical Integration
8.1 Historical Overview
8.2 Principles of Nonlinear Stability for Runge-Kutta Methods
8.3 Preservation of Linear and Quadratic Invariants
8.4 Symplectic Methods
8.5 Symmetric Methods
8.6 Backward Error Analysis
8.6.1 Modified Differential Equations
8.6.2 Truncated Modified Differential Equations
8.6.3 Long-Term Analysis of Symplectic Methods
8.7 Long-Term Analysis of Multivalue Methods
8.7.1 Modified Differential Equations
8.7.2 Bounds on the Parasitic Components
8.7.3 Long-Time Conservation for Hamiltonian Systems
8.8 Exercises
9 Numerical Methods for Stochastic Differential Equations
9.1 Discretization of the Brownian Motion
9.2 Itô and Stratonovich Integrals
9.3 Stochastic Differential Equations
9.4 One-Step Methods
9.4.1 Euler-Maruyama and Milstein Methods
9.4.2 Stochastic -Methods
9.4.3 Stochastic Perturbation of Runge-Kutta Methods
9.5 Accuracy Analysis
9.6 Linear Stability Analysis
9.6.1 Mean-Square Stability
9.6.2 Mean-Square Stability of Stochastic -Methods
9.6.3 A-stability Preserving SRK Methods
9.7 Principles of Stochastic Geometric Numerical Integration
9.7.1 Nonlinear Stability Analysis: Exponential Mean-Square Contractivity
9.7.2 Mean-Square Contractivity of Stochastic -Methods
9.7.3 Nonlinear Stability of Stochastic Runge-Kutta Methods
9.7.4 A Glance to the Numerics for Stochastic Hamiltonian Problems
9.8 Exercises
A Summary of Test Problems
A.1 General ODEs
A.2 Hamiltonian Problems
A.3 Stochastic Differential Equations
Bibliography
Index




پست ها تصادفی