توضیحاتی در مورد کتاب Optogenetics
نام کتاب : Optogenetics
عنوان ترجمه شده به فارسی : نوبت زا
سری :
نویسندگان : Peter Hegemann (editor), Stephan Sigrist (editor)
ناشر : De Gruyter
سال نشر : 2013
تعداد صفحات : 240
ISBN (شابک) : 9783110270723 , 9783110270716
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 7 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
List of contributing authors\nIntroduction\n1 The biophysics and engineering of signaling photoreceptors\n 1.1 Photoreceptors\n 1.1.1 Novel photoreceptors\n 1.1.2 Biophysics of photoreceptors and signal transduction\n 1.2 Engineering of photoreceptors\n 1.2.1 Approaches to designing light-regulated biological processes\n 1.3 Case study – transcriptional control in cells by light\n 1.4 Conclusion\n Acknowledgements\n References\n2 Current challenges in optogenetics\n 2.1 Introduction\n 2.2 Background: current functionality of tools\n 2.3 Unsolved problems and open questions: technology from cell biology, optics, and behavior\n 2.4 Unsolved problems and open questions: genomics and biophysics\n 2.5 Conclusion\n References\n3 Challenges and opportunities for optochemical genetics\n 3.1 Introduction\n 3.2 Photosensitizing receptors\n 3.3 PCL and PTL development and applications\n 3.4 Advantages and disadvantages of PCLs and PTLs\n 3.5 Conclusion\n References\n4 Optogenetic imaging of neural circuit dynamics using voltage-sensitive fluorescent proteins: potential, challenges and perspectives\n 4.1 Introduction\n 4.2 The biological problem\n 4.3 The large scale challenge of circuit neurosciences\n 4.4 The current approach to the large-scale integration problem\n 4.5 Large-scale recordings of neuronal activities using optogenetic approaches\n 4.6 Genetically encoded voltage indicators: state of development and application\n 4.7 Unsolved methodological / technical challenges\n References\n5 Why optogenetic “control” is not (yet) control\n Acknowledgments\n References\n6 Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans\n 6.1 Introduction – the nematode as a genetic model in systems neurosciencesystems neuroscience\n 6.2 Imaging of neural activity in the nematode\n 6.2.1 Genetically encoded Ca2+ indicators (GECIs)\n 6.2.2 Imaging populations of neurons in immobilized animals\n 6.2.3 Imaging neural activity in freely moving animals\n 6.2.4 Other genetically encoded indicators of neuronal function\n 6.3 Optogenetic tools established in the nematode\n 6.3.1 Channelrhodopsin (ChR2) and ChR variants with different functional properties for photodepolarization\n 6.3.2 Halorhodopsin and light-triggered proton pumps for photohyperpolarization\n 6.3.3 Photoactivated Adenylyl Cyclase (PAC) for phototriggered cAMPdependent effects that facilitate neuronal transmission\n 6.3.4 Other optogenetic approaches\n 6.3.5 Stimulation of single neurons by optogenetics in freely behaving C. elegans\n 6.4 Examples for optogenetic applications in C. elegans\n 6.4.1 Optical control of synaptic transmission at the neuromuscular junction and between neurons\n 6.4.2 Optical control of neural network activity in the generation of behavior\n 6.5 Future challenges\n 6.5.1 Closed-loop optogenetic control and optical feedback from behavior and individual neurons\n 6.5.2 Requirements for integrated optogenetics in the nematode\n References\n7 Putting genetics into optogenetics: knocking out proteins with light\n 7.1 Introduction\n 7.2 Protein degradation\n 7.3 Light stimulation\n References\n8 Optogenetic approaches in behavioral neuroscience\n 8.1 Introduction\n 8.2 Approaches to dissect neuronal circuits: determining physiological correlations, requirement and sufficiency of neurons\n 8.3 Optogenetic analysis of simple stimulus-response-connections\n 8.4 Optogenetic and thermogenetic analysis of modulatory neurons: artificial mimicry of relevance\n 8.5 Conclusion\n References\n9 Combining genetic targeting and optical stimulation for circuit dissection in the zebrafish nervous system\n 9.1 Introduction\n 9.2 Zebrafish neuroscience: Genetics + Optics + Behavior\n 9.3 Genetic targeting of optogenetic proteins to specific neurons\n 9.4 Optical stimulation in behaving zebrafish\n 9.5 Annotating behavioral functions of genetically-identified neurons by optogenetics\n 9.5.1 Spinal cord neurons (Rohon–Beard and Kolmer–Agduhr cells)\n 9.5.2 Hindbrain motor command neurons\n 9.5.3 Tangential neurons in the vestibular system\n 9.5.4 Size filtering neurons in the tectum\n 9.5.5 Whole-brain calcium imaging of motor adaptation at single-cell resolution\n 9.6 Future directions\n References\n10 Optogenetic analysis of mammalian neural circuits\n 10.1 Introduction\n 10.2 Optogenetic approaches to probe integrative properties at the cellular level\n 10.2.1 Excitatory signal integration at dendrites\n 10.2.2 Control of excitatory signal integration by inhibition or neuromodulation\n 10.2.3 Long-term analysis of synaptic function\n 10.3 Circuits and systems level\n 10.4 Optogenetics and behavior: testing causal relationships in freely moving animals\n References\n11 Optogenetics to benefit human health: opportunities and challenges\n 11.1 Introduction\n 11.2 Opportunities for translational applications\n 11.3 Safety challenges\n 11.4 Need for feedback\n 11.5 Conclusion\n References\n12 Optogenetic tools for controlling neural activity: molecules and hardware\n 12.1 Overview\n 12.2 Molecular tools for sensitizing neural functions to light\n 12.3 Hardware for delivery of light into intact brain circuits\n References\n13 In vivo application of optogenetics in rodents\n 13.1 Introduction\n 13.2 Sleep / wake regulation\n 13.3 Addiction\n 13.4 Fear, anxiety and depression\n 13.5 Autism and schizophrenia\n 13.6 Aggression\n 13.7 Breathing\n 13.8 Seizures\n 13.9 Conclusion\n Acknowledgments\n References\n14 Potential of optogenetics in deep brain stimulation\n 14.1 DBS history and indications\n 14.2 Electrical DBS: advantages and drawbacks\n 14.3 Potential of optogenetic stimulation\n 14.4 Conclusion\n References\n15 Optogenetic approaches for vision restoration\n 15.1 Introduction\n 15.2 Proof-of-concept studies\n 15.3 Light sensors\n 15.4 rAAV-mediated retinal gene delivery\n 15.5 Retinal cell-type specific targeting\n 15.6 Summary\n References\n Further reading\n16 Restoration of vision – the various approaches\n 16.1 Introduction\n 16.2 The various conditions to be treated\n 16.3 State of the various restorative approaches\n 16.3.1 Neuroprotection\n 16.3.1.1 Encapsulated cell technology (ECT)\n 16.3.1.2 Electrostimulation\n 16.3.1.3 Visual Cycle modulators\n 16.3.1.4 Gene replacement therapy\n 16.3.1.5 Stem cell approaches\n 16.3.1.6 Optogenetic approaches\n 16.3.1.7 Electronic retinal prosthesis\n 16.3.2 Cortical prosthesis\n 16.3.3 Tongue stimulators\n 16.4 The current situation\n 16.5 Open Questions\n 16.6 Conclusion\n References\n Selected registered clinical trials as by February 2013\n17 Optogenetic approaches to cochlear prosthetics for hearing restoration\n 17.1 Background and state of the art\n 17.2 Current research on cochlear optogenetics\n 17.2.1 Current and future work on cochlear optogenetics aims at\n 17.3 Potential and risks of cochlear optogenetics for auditory prosthetics\n References\n18 History in the making: the ethics of optogenetics\n References\n19 Optogenetics as a new therapeutic tool in medicine? A view from the principles of biomedical ethics\n 19.1 Principles of optogenetics\n 19.2 Principles of biomedical ethics\n 19.2.1 Respect for the patient’s autonomy\n 19.2.2 Nonmaleficence\n 19.2.3 Beneficence\n 19.2.4 Justice\n 19.3 Conclusion\n References\nAppendix : Dahlem-Conference (Berlin, September 2–5, 2012): “Optogenetics. Challenges and Perspectives.”\nIndex