Particle Physics Reference Library

دانلود کتاب Particle Physics Reference Library

43000 تومان موجود

کتاب کتابخانه مرجع فیزیک ذرات نسخه زبان اصلی

دانلود کتاب کتابخانه مرجع فیزیک ذرات بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 4


توضیحاتی در مورد کتاب Particle Physics Reference Library

نام کتاب : Particle Physics Reference Library
عنوان ترجمه شده به فارسی : کتابخانه مرجع فیزیک ذرات
سری :
نویسندگان : ,
ناشر : Springer
سال نشر : 2020
تعداد صفحات : 867
ISBN (شابک) : 9783030342449 , 3030353176
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 36 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Contents
About the Editors
1 Accelerators, Colliders and Their Application
1.1 Why Build Accelerators?
1.2 Types and Evolution of Accelerators
1.2.1 Early Accelerators
1.2.2 The Ray Transformer
1.2.3 Repetitive Acceleration
1.2.4 Linear Accelerators
1.2.5 Cyclotrons
1.2.6 The Synchrotron
1.2.7 Phase Stability
References
2 Beam Dynamics
2.1 Linear Transverse Beam Dynamics
2.1.1 Co-ordinate System
2.1.2 Displacement and Divergence
2.1.3 Bending Magnets and Magnetic Rigidity
2.1.4 Particle Trajectory in a Dipole Bending Magnet
2.1.5 Weak Focusing
2.1.6 Alternating Gradient Focusing
2.1.7 Quadrupole Magnets
2.1.8 The Equation of Motion
2.1.9 Matrix Description
2.1.10 Transport Matrices for Lattice Components
2.1.11 The Betatron Envelopes
2.2 Coupling
2.2.1 Coupling Fields
2.2.2 Qualitative Treatment of Coupling
2.3 Liouville\'s Theorem
2.3.1 Chains of Accelerators
2.3.2 Exceptions to Liouville\'s Theorem
2.4 Momentum Dependent Transverse Motion
2.4.1 Dispersion
2.4.2 Chromaticity
2.5 Longitudinal Motion
2.5.1 Stability of the Lagging Particle
2.5.2 Transition Energy
2.5.3 Synchrotron Motion
2.5.4 Stationary Buckets
References
3 Non-linear Dynamics in Accelerators
3.1 Introduction
3.1.1 Motivation
3.1.2 Single Particle Dynamics
3.1.3 Layout of the Treatment
3.2 Variables
3.2.1 Trace Space and Phase Space
3.2.2 Curved Coordinate System
3.3 Sources of Non-linearities
3.3.1 Non-linear Machine Elements
3.3.1.1 Unwanted Non-linear Machine Elements
3.3.1.2 Wanted Non-linear Machine Elements
3.3.2 Beam–Beam Effects and Space Charge
3.4 Map Based Techniques
3.5 Linear Normal Forms
3.5.1 Sequence of Maps
3.5.2 Analysis of the One Turn Map
3.5.3 Action-Angle Variables
3.5.4 Beam Emittance
3.6 Techniques and Tools to Evaluate and Correct Non-linear Effects
3.6.1 Particle Tracking
3.6.1.1 Symplecticity
3.6.2 Approximations and Tools
3.6.3 Taylor and Power Maps
3.6.3.1 Taylor Maps
3.6.3.2 Thick and Thin Lenses
3.6.3.3 Symplectic Matrices and Symplectic Integration
3.6.3.4 Comparison Symplectic Versus Non-symplectic Integration
3.7 Hamiltonian Treatment of Electro-Magnetic Fields
3.7.1 Lagrangian of Electro-Magnetic Fields
3.7.1.1 Lagrangian and Hamiltonian
3.7.2 Hamiltonian with Electro-Magnetic Fields
3.7.3 Hamiltonian Used for Accelerator Physics
3.7.3.1 Lie Maps and Transformations
3.7.3.2 Concatenation of Lie Transformations
3.7.4 Analysis Techniques: Poincare Surface of Section
3.7.5 Analysis Techniques: Normal Forms
3.7.5.1 Normal Form Transformation: Linear Case
3.7.5.2 Normal Form Transformation: Non-linear Case
3.7.6 Truncated Power Series Algebra Based on Automatic Differentiation
3.7.6.1 Automatic Differentiation: Concept
3.7.6.2 Automatic Differentiation: The Algebra
3.7.6.3 Automatic Differentiation: The Application
3.7.6.4 Automatic Differentiation: Higher Orders
3.7.6.5 Automatic Differentiation: More Variables
3.7.6.6 Differential Algebra: Applications to Accelerators
3.7.6.7 Differential Algebra: Simple Example
3.8 Beam Dynamics with Non-linearities
3.8.1 Amplitude Detuning
3.8.1.1 Amplitude Detuning due to Non-linearities in Machine Elements
3.8.1.2 Amplitude Detuning due to Beam–Beam Effects
3.8.1.3 Phase Space Structure
3.8.2 Non-linear Resonances
3.8.2.1 Resonance Condition in One Dimension
3.8.2.2 Driving Terms
3.8.3 Chromaticity and Chromaticity Correction
3.8.4 Dynamic Aperture
3.8.4.1 Long Term Stability and Chaotic Behaviour
3.8.4.2 Practical Implications
References
4 Impedance and Collective Effects
4.1 Space Charge
4.1.1 Direct Space Charge
4.1.2 Indirect Space Charge
4.2 Wake Fields and Impedances
4.3 Coherent Instabilities
4.3.1 Longitudinal
4.3.2 Transverse
4.4 Landau Damping
4.4.1 Transverse
4.4.2 Longitudinal
4.5 Two-Stream Effects (Electron Cloud and Ions)
4.5.1 Electron Cloud Build-Up in Positron/Hadron Machines
4.5.2 The Electron Cloud Instability
4.5.3 Mitigation and Suppression
4.6 Beam–Beam Effects
4.6.1 Introduction
4.6.2 Beam–Beam Force
4.6.2.1 Elliptical Beams
4.6.2.2 Round Beams
4.6.3 Incoherent Effects: Single Particle Effects
4.6.3.1 Beam–Beam Parameter
4.6.3.2 Non-linear Effects
4.6.3.3 Beam Stability
4.6.3.4 Beam–Beam Limit
4.6.4 Studies of Head-on Collisions at the LHC
4.6.4.1 PACMAN Bunches
4.6.5 Head-on Beam–Beam Tune Shift
4.6.6 Effect of Number of Head-on Collisions
4.6.7 Crossing Angle and Long Range Interactions
4.6.7.1 Long-Range Beam–Beam Effects
4.6.7.2 Opposite Sign Tune Shift
4.6.7.3 Strength of Long-Range Interactions
4.6.7.4 Footprint for Long-Range Interactions
4.6.8 Studies of Long Range Interactions in the LHC
4.6.8.1 Dynamic Aperture Reduction Due to Long-Range Interactions
4.6.8.2 Beam–Beam Induced Orbit Effects
4.6.9 Coherent Beam–Beam Effects
4.6.9.1 Coherent Beam–Beam Modes
4.6.10 Compensation of Beam–Beam Effects
4.6.10.1 Electron Lenses
4.6.10.2 Electrostatic Wire
4.6.10.3 Möbius Scheme
4.7 Numerical Modelling
4.7.1 The Electromagnetic Problem
4.7.2 Beam Dynamics
References
5 Interactions of Beams with Surroundings
5.1 The Interactions of High Energy Particles with Matter
5.1.1 Basic Physical Processes in Radiation Transport Through Matter
5.1.2 Simulation Tools
5.1.2.1 FLUKA
5.1.2.2 GEANT4
5.1.2.3 MARS15
5.1.2.4 MCNP
5.1.2.5 PHITS
5.1.2.6 Simulation Uncertainties
5.1.3 Practical Shielding Considerations
5.1.3.1 Radiation Attenuation
5.1.3.2 Shielding of Electromagnetic Showers
5.1.3.3 Shielding of Neutrons
5.2 Lifetimes, Intensity and Luminosity
5.2.1 Beam-Gas
5.2.2 Thermal Photons
5.2.3 Luminosity Lifetime
5.3 Experimental Conditions
5.3.1 Sources of Detector Background and Detector Performance
5.3.2 Synchrotron Radiation Background
References
6 Design and Principles of Synchrotrons and Circular Colliders
6.1 Beam Optics and Lattice Design in High Energy Particle Accelerators
6.1.1 Geometry of the Ring
6.1.2 Lattice Design
6.2 Lattice Insertions
6.2.1 Low Beta Insertions
6.2.2 Injection and Extraction Insertions
6.2.3 Dispersion Suppressors
6.2.3.1 The “Straightforward” Way: Dispersion Suppression Using Quadrupole Magnets
6.2.3.2 The “Clever” Way: Half Bend Schemes
6.2.3.3 The “Missing Bend” Dispersion Suppressor Scheme
6.3 Injection and Extraction Techniques
6.3.1 Fast Injection
6.3.2 Slip-Stacking Injection
6.3.3 H− Charge-Exchange Injection
6.3.4 Lepton Accumulation Injection
6.3.5 Fast Extraction
6.3.6 Resonant Extraction
6.3.7 Continuous Transfer Extraction
6.3.8 Resonant Continuous Transfer Extraction
6.3.9 Other Injection and Extraction Techniques
6.4 Concept of Luminosity
6.4.1 Introduction
6.4.2 Computation of Luminosity
6.4.3 Luminosity with Correction Factors
6.4.3.1 Effect of Crossing Angle and Transverse Offset
6.4.3.2 Hour Glass Effect
6.4.3.3 Crabbed Waist Scheme
6.4.4 Integrated Luminosity and Event Pile Up
6.4.5 Measurement and Calibration of Luminosity
6.4.6 Absolute Luminosity: Lepton Colliders
6.4.7 Absolute Luminosity: Hadron Colliders
6.4.7.1 Measurement by Profile Monitors and Beam Displacement
6.4.7.2 Absolute Measurement with Optical Theorem
6.4.8 Luminosity in Linear Colliders
6.4.8.1 Disruption and Luminosity Enhancement Factor
6.4.8.2 Beamstrahlung
6.5 Synchrotron Radiation and Damping
6.5.1 Basic Properties of Synchrotron Radiation
6.5.2 Radiation Damping
6.6 Computer Codes for Beam Dynamics
6.6.1 Introduction
6.6.2 Classes of Beam Dynamics Codes
6.6.3 Optics Codes
6.6.4 Single Particle Tracking Codes
6.6.4.1 Techniques
6.6.4.2 Analysis of Tracking Data
6.6.5 Multi Particle Tracking Codes
6.6.6 Machine Protection
6.7 Electron-Positron Circular Colliders
6.7.1 Physics of Electron-Positron Rings
6.7.2 Design of Colliders
6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme
6.8 Hadron Colliders and Electron-Proton Colliders
6.8.1 Principles of Hadron Colliders
6.8.2 Proton-Antiproton Colliders
6.8.3 Proton-Proton Colliders
6.8.4 Electron-Proton Colliders
6.9 Ion Colliders
6.10 Beam Cooling
6.10.1 Introduction
6.10.2 Beam Cooling Techniques
6.10.2.1 Radiation Cooling
6.10.2.2 Microwave Stochastic Cooling
6.10.2.3 Electron Cooling
6.10.2.4 Laser Cooling
6.10.2.5 Ionisation Cooling
6.10.2.6 Cooling of Particles in Traps
References
7 Design and Principles of Linear Accelerators and Colliders
7.1 General Introduction on Linear Accelerators
7.2 High Luminosity Issues and Beam-Beam Effects
7.3 CLIC & ILC
7.3.1 Introduction
7.3.2 ILC Design
7.3.3 CLIC Design
7.3.4 On-Going or Recent R&D
7.3.4.1 ILC Specific
7.3.4.2 CLIC Specific
7.3.5 Common Issues and Prospects
7.4 Accelerating Structures Design and Efficiency
7.4.1 Normal Conducting Accelerating Structures
7.4.2 Superconducting Accelerating Structures
7.5 Wakefields and Emittance Preservation
7.5.1 Short-Range Wakefields
7.5.2 Long-Range Wakefields
7.5.3 Single-Bunch Wakefield-Induced Effects
7.5.3.1 Beam Loading
7.5.3.2 Wake-Induced Energy Spread
7.5.3.3 Energy Spread Compensation
7.5.3.4 Single-Bunch Beam Break-up
7.5.3.5 Single-Bunch BNS Damping
7.5.4 Multi-Bunch Wakefield-Induced Effects
7.5.4.1 Multi-Bunch Beam Break-Up
7.5.4.2 Control of Multi-Bunch BBU
7.6 Focusing at Interaction Point
7.6.1 Final Focus Design
7.6.2 Final Focus Optimization
7.6.3 Final Focus tuning
7.7 Low Emittance Generation
7.8 Recirculated Linacs and Energy Recovery
7.8.1 Novosibirsk ERL
7.8.2 S-DALINAC
7.8.3 MESA
7.8.4 Compact ERL
7.8.5 bERLinPro
7.8.6 CBETA
7.8.7 PERLE
References
8 Accelerator Engineering and Technology: AcceleratorTechnology
8.1 Magnets, Normal and Superconducting
8.1.1 Introduction
8.1.2 Normal Conducting Magnets
8.1.2.1 Magnetic Design
8.1.2.2 Coils
8.1.2.3 Yoke
8.1.2.4 Costs
8.1.2.5 Undulators, Wigglers, Permanent Magnets
8.1.2.6 Solenoids
8.1.3 Superconducting Magnets
8.1.3.1 Superconducting Materials
8.1.3.2 Superconducting Cables
8.1.3.3 Stability and Margins, Quench and Protection
8.1.3.4 Magnetization, Coupling and AC Loss
8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets
8.1.3.6 Current Leads
8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects
8.1.3.8 Super-Ferric Magnets
8.2 RF Cavities
8.2.1 Parameters of a Cavity
8.2.2 The RF Cavity as Part of the System
8.2.3 Ferrite Cavities
8.2.4 Wide-Band Cavities
8.2.5 Single-Gap Vacuum Cavities
8.2.6 Multi-Gap Cavities
8.2.7 Superconducting Cavities
8.2.8 RF Cavities for Special Applications
8.2.9 Deflecting Cavities: Crab Cavities
8.3 Cryogenics
8.3.1 Introduction
8.3.2 Cryogenic Fluids
8.3.2.1 Thermophysical Properties
8.3.2.2 Liquid Boil-off
8.3.2.3 Cryogen Usage for Equipment Cooldown
8.3.2.4 Phase Domain
8.3.3 Materials at Low Temperatures
8.3.4 Heat Transfer and Thermal Design
8.3.4.1 Solid Conduction
8.3.4.2 Radiation
8.3.4.3 Gas Conduction
8.3.4.4 Multilayer Insulation
8.3.4.5 Vapour-Cooling of Necks and Supports
8.3.5 Refrigeration and Liquefaction
8.3.5.1 Thermodynamics of Refrigeration
8.3.5.2 Helium Refrigerators vs. Liquefiers
8.3.5.3 Real Cycles and Refrigeration Equipment
8.4 High Precision Power Converters for Particle Accelerators
8.4.1 Introduction to Magnet Power Converters
8.4.2 Main Parameters of Magnet Power Converters
8.4.3 Power Converter Topologies
8.4.3.1 Thyristor Controlled Rectifier
8.4.3.2 Switch-Mode Power Converter
8.4.3.3 Fast Pulsed Power Converter
8.4.3.4 High Power System with Local Energy Storage
8.4.4 High Accuracy in Power Converters for Particle Accelerators
8.4.4.1 Power Converter Control
8.4.4.2 Current Measurement in Particle Accelerators
8.5 Ultra-High Vacuum
8.5.1 Introduction
8.5.2 Vacuum Fundamentals
8.5.2.1 Total, Partial and Vapor Pressures
8.5.2.2 Gas Laws and Gas Densities
8.5.2.3 Gas Flow, Mean Free Path, Throughput and Ultimate Pressure
8.5.2.4 Outgassing of Materials
8.5.2.5 Kinetic Theory of Gasses
8.5.2.6 Conductance and Effective Pumping Speed
8.5.3 Vacuum Dynamics
8.5.3.1 Synchrotron Radiation
8.5.3.2 Electron Cloud
8.5.3.3 Vacuum Stability
8.5.3.4 Particle Losses
8.5.4 Vacuum Engineering
8.5.4.1 Vacuum Pumping
8.5.4.2 Vacuum Instrumentation
8.5.4.3 Vacuum Sectorisation
8.5.4.4 Corrosion Issues
8.5.4.5 Experimental Areas
8.6 Beam Instrumentation and Diagnostics
8.6.1 Beam Position Measurement
8.6.1.1 Pick-Ups
8.6.1.2 Beam Position Acquisition Systems
8.6.2 Beam Current and Intensity Measurement
8.6.2.1 Faraday Cup
8.6.2.2 AC Beam Transformers
8.6.2.3 DC Beam Transformers
8.6.3 Diagnostics of Transverse Beam Motion
8.6.3.1 Tune Measurement
8.6.3.2 Chromaticity Measurement
8.6.3.3 Coupling Measurement
8.6.4 Beam Profile Measurements
8.6.4.1 Secondary Emission Grids
8.6.4.2 Scintillator and Optical Transition Radiation Screens
8.6.4.3 Wire Scanners
8.6.4.4 Residual Gas and Luminescence Monitors
8.6.4.5 Synchrotron Radiation Monitors
8.6.5 Beam Loss Monitoring
8.6.5.1 Global BLM Systems
8.6.5.2 Distributed BLM Systems
8.6.6 Short Bunch Length Diagnostics
8.6.6.1 Direct Beam Observation
8.6.6.2 Coherent Radiation
8.6.6.3 Radio-Frequency and Electro-optic Sampling Techniques
8.7 Injection and Extraction Related Hardware: Kickers and Septa
8.7.1 Fast Pulsed Systems (Kickers)
8.7.1.1 Kicker Magnets
8.7.1.2 Beam Coupling Impedance
8.7.1.3 Pulse Generation and Forming
8.7.1.4 Power Switching
8.7.1.5 Other Types of Circuits
8.7.1.6 Electronics and Controls
8.7.2 Electrostatic and Magnetic Septa
8.7.2.1 Electrostatic Septa
8.7.2.2 Magnetic Septa
8.8 Collimators
8.8.1 Introduction
8.8.2 Requirements for Modern Collimators
8.8.2.1 High Power Loads
8.8.2.2 Destructive Beam Densities
8.8.2.3 Precision Tolerances
8.8.3 Collimator Solutions
8.8.3.1 An Advanced Two-Jaw Collimator Concept
8.8.3.2 Mechanical Design, Cooling and Vacuum
8.8.3.3 Precision Actuation and Monitoring
8.8.3.4 Examples of Installed Collimators
8.8.4 Choice of Collimator Jaw Material and Length
8.8.5 Advanced Collimator Concepts
8.9 Geodesy and Alignment for Particle Accelerators
8.9.1 Introduction
8.9.2 Alignment Tolerances
8.9.3 Reference and Co-ordinate Systems
8.9.4 Definition of the Beam Line on the Accelerator Site
8.9.5 Geodetic Network
8.9.6 Tunnel Preliminary Works
8.9.7 The Alignment References
8.9.8 Determination of the Co-ordinates of the Fiducials
8.9.9 Alignment of Accelerator Components
8.9.10 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles
8.9.11 Alignment of Detector Components
References
9 Accelerator Operations
9.1 Introduction
9.2 Parameter Control
9.2.1 Magnetic Elements
9.2.2 Transverse Beam Parameters
9.2.3 Generalization
9.3 Orbit Correction
9.3.1 Global Orbit Correction
9.3.2 SVD Algorithm
9.3.3 MICADO Algorithm
9.3.4 Local Orbit Bumps
9.3.5 Software
9.4 Beam Feedback Systems
9.4.1 Feedback Controller Design
9.4.1.1 First and Second Order Example
9.4.1.2 Non-linear Systems
9.4.2 Inter-Loop Dependencies
9.5 Optics Measurement and Correction
9.5.1 Introduction
9.5.2 Optics Measurement Techniques
9.5.2.1 Quadrupole Strength Modulation
9.5.2.2 Closed Orbit Distortion
9.5.2.3 Betatron Oscillations, Free or Forced
9.5.2.4 Dispersion Measurement
9.5.3 Optics Correction Techniques
9.5.3.1 Segment-by-Segment Technique
9.6 Longitudinal Control and Manipulations
9.6.1 Adiabaticity
9.6.2 Changing the Longitudinal Characteristics of the Bunches
9.6.3 Bunch Rotation
9.6.4 Longitudinal Controlled Blow-Up
9.6.5 Changing the Bunch Train
9.6.5.1 Iso-Adiabatic Rebunching (Debunching)
9.6.5.2 Splitting (Merging)
9.6.6 Slip Stacking
9.6.6.1 Batch Compression (Expansion)
9.7 Collimation
9.7.1 Introduction
9.7.2 Definition of Cleaning Efficiency and Performance
9.7.2.1 Local Cleaning Inefficiency
9.7.2.2 Performance Reach with Collimation
9.7.3 Settings
9.7.4 Setup
9.7.4.1 Measurement
9.8 Luminosity Optimization
9.8.1 Introduction
9.8.2 Concepts
9.8.3 Collider with Strong Synchrotron Radiation Damping
9.8.4 Collider with Weak Synchrotron Radiation Damping
9.8.5 Luminosity Optimization in the Presence of a Crossing Angle
9.8.6 Maximizing the Integrated Luminosity
9.8.7 Luminosity levelling
9.8.7.1 Levelling by Transverse Offset
9.8.7.2 Levelling by Crossing Angle
9.8.7.3 Levelling by β*
9.8.7.4 Alternative Methods and Combined Levelling Scenarios
9.9 Machine Protection
9.9.1 Definition of Risk
9.9.2 Beam Losses and Consequences
9.9.3 Time Constants for Beam Losses
9.9.3.1 Ultra Fast Beam Losses
9.9.3.2 Very Fast Beam Losses
9.9.3.3 Fast Beam Losses
9.9.3.4 Slow Beam Losses
9.9.4 Principles of Machine Protection
9.9.5 Strategy for Protection
9.9.6 Active and Passive Protection
9.9.7 Interlock Management
9.9.8 Beam Instrumentation for Machine Protection
9.9.8.1 Beam Loss Monitors—BLM
9.9.8.2 Beam Position Monitors—BPM
9.9.8.3 Beam Current Monitors
9.9.9 Machine Protection at the LHC
References
10 The Largest Accelerators and Colliders of Their Time
10.1 Proton Accelerators and Colliders
10.1.1 CERN Proton Synchrotron (CPS)
10.1.2 Brookhaven Alternating Gradient Synchrotron (AGS)
10.1.3 The 70 GeV Proton Synchrotron (U-70) of NRC “Kurchatov Institute”: IHEP (Protvino)
10.1.4 The CERN Intersecting Storage Rings (ISR)
10.1.5 The CERN Super Proton Synchrotron (SPS)
10.1.6 The CERN Super Proton Synchrotron (SPS) as Proton-Antiproton Collider
10.1.6.1 Acknowledgement
10.1.7 Tevatron of Fermi National Laboratory (FNAL)
10.1.7.1 Acknowledgement
10.2 RHIC
10.2.1 The RHIC Facility
10.2.2 Collider Operation
10.3 Electron Accelerators and Electron–Positron Colliders
10.3.1 Cyclotrons
10.3.2 Synchrotrons
10.3.3 Electron Positron Circular Colliders
10.3.3.1 ADA
10.3.3.2 VEP-1
10.3.3.3 CBX
10.3.3.4 VEPP-2
10.3.3.5 ACO
10.3.3.6 ADONE
10.3.3.7 CEA
10.3.3.8 SPEAR
10.3.3.9 VEPP-2M
10.3.3.10 DORIS
10.3.3.11 DCI
10.3.3.12 PETRA
10.3.3.13 CESR
10.3.3.14 VEPP-4
10.3.3.15 PEP
10.3.3.16 Tristan
10.3.3.17 SLC
10.3.3.18 BEPC
10.3.3.19 LEP
10.3.3.20 DAFNE
10.3.3.21 PEP-II
10.3.3.22 KEKB
10.3.3.23 BEPC-II
10.3.3.24 VEPP-2000
10.3.3.25 SUPERKEKB
10.4 Asymmetric B-Factories
10.4.1 Physics Motivation
10.4.2 Double Ring Collider
10.4.3 Luminosity
10.4.4 Crossing Angle
10.4.5 Storing High Current
10.4.6 Electron Cloud
10.4.7 Beam Optics
10.4.8 Beam Diagnostics and Control
10.4.9 Collision Tuning
10.4.10 Injector
10.4.11 Crab Crossing
10.4.12 SuperKEKB
10.5 Tevatron—HERA—LHC
10.5.1 Three Steps in the Evolution of Superconducting Accelerator Magnets
10.5.2 HERA Experience and the Design of Future Lepton-Hadron Colliders
10.5.2.1 Lepton-Hadron Beam-Beam Interactions
10.5.2.2 Beam-Gas Backgrounds of the Colliding Beam Detectors
10.5.2.3 Hadron Beam Collimation
10.5.2.4 Spin Polarization of the HERA Electron Beam
10.5.2.5 Lessons Learned from HERA Dynamic Aperture
10.5.2.6 HERA IR Magnet Design
10.5.2.7 Conclusion
10.6 LHC Layout and Performance to Date
10.6.1 Introduction
10.6.2 Layout
10.6.2.1 The Straight Sections
10.6.2.2 The Arcs
10.6.2.3 The Dispersion Suppressors
10.6.2.4 LSS1 and LSS5
10.6.2.5 LSS2
10.6.2.6 LSS8
10.6.2.7 LSS3 and LSS7
10.6.2.8 LSS4
10.6.2.9 LSS6
10.6.3 Performance
References
11 Application of Accelerators and Storage Rings
11.1 Synchrotron Radiation and Free-Electron Lasers
11.1.1 Synchrotron Radiation
11.1.1.1 Basic Properties of Synchrotron Radiation
11.1.1.2 Spectrum of Synchrotron Radiation from a Long Bending Magnet
11.1.1.3 Simple Means of Changing the Emission Spectrum
11.1.1.4 Wigglers and Undulators
11.1.1.5 Radiation from Many Electrons
11.1.2 Free-Electron Lasers
11.1.2.1 One Dimensional FEL Theory
11.1.2.2 Three Dimensional Effects
11.1.2.3 Technical Requirements
11.2 Accelerators in Industry
11.2.1 Introduction
11.2.2 Electron Accelerators
11.2.3 Ion Accelerators
11.2.3.1 Materials Modifications
11.2.3.2 Analysis of Materials
11.2.4 Accelerator Mass Spectroscopy
11.2.5 Conclusion
11.2.6 Accelerator Suppliers
11.3 Accelerators in Medicine: Applications of Accelerators and Storage Rings
11.3.1 Accelerators and Radiopharmaceuticals
11.3.1.1 History
11.3.1.2 Accelerator for Radioisotope Production
11.3.1.3 The Radionuclides Used in Nuclear Medicine
11.3.2 Accelerators and Cancer Therapy
11.3.2.1 History
11.3.2.2 The Bases of Cancer Radiation Therapy
11.3.2.3 Cyclotrons and Synchrotrons in Hadron Therapy
11.3.2.4 Present and Future Challenges
11.4 Spallation Sources
11.4.1 Introduction
11.4.2 The Linear Accelerator
11.4.2.1 High-Level Machine Design
11.4.2.2 Linac Layout
11.4.3 Rapid Cycling Accelerators for Short Pulse Spallation Neutron Sources
11.4.3.1 Charge Exchange Injection from a Pulsed H− Linac to a Fast Cycling Synchrotron
11.4.3.2 Charge Exchange Injection from a Pulsed H− Linac to a Pulsed Compressor Ring
11.4.3.3 Direct Proton Injection from a Pulsed Proton Linac to a Fast Cycling Synchrotron
11.4.3.4 Direct Proton Injection from a Pulsed Proton Linac to a Pulsed Compressor Ring
11.4.3.5 Direct Proton Injection from a Pulsed Proton Linac to a Fast Cycling FFAG Ring
11.4.4 High Intensity Cyclotrons
11.5 Heavy Ion Accelerators for Nuclear Physics
11.5.1 Accelerator Facilities for Heavy Ion Nuclear Physics: Background and Aims
11.5.2 Accelerators
11.5.2.1 Introduction
11.5.2.2 Special Issues of Heavy Ion Accelerators and Storage Rings
11.5.2.3 Ion Accelerator Facilities
References
12 Outlook for the Future
12.1 Plasma Accelerators
12.1.1 Introduction
12.1.2 Physical Concepts
12.1.2.1 Phase Velocity vϕ
12.1.2.2 Dephasing Length Ld
12.1.2.3 Pump Depletion Length Lpd
12.1.2.4 Injection and Trapping
12.1.2.5 Net Energy Gain ΔW
12.1.2.6 Beam Loading
12.1.2.7 Drive Pulse Evolution
12.1.2.8 Guiding
12.1.2.9 Head Erosion
12.1.2.10 Instabilities, Scattering, and Radiation Loss
12.1.3 Beam Driven Plasma Wakefield Accelerators
12.1.3.1 Electron Beam Driven PWA
12.1.3.2 Short Proton and Positron Beam Driven PWA
12.1.3.3 Long Proton Beam Driven PWA
12.1.4 Laser-Driven Plasma Accelerators
12.1.4.1 Plasma Beat Wave Accelerator (PBWA)
12.1.4.2 Self-Modulated Laser-Wakefield accelerator (SM-LWFA)
12.1.4.3 Laser Wakefield Accelerator (LWFA)
12.1.5 LWFA Regimes
12.1.5.1 Linear Regime
12.1.5.2 Nonlinear Regime
12.1.5.3 Scaling Laws
12.1.6 Status
12.1.6.1 LWFA and PWA
12.1.6.2 Proton-Driven Plasma Wakeeld Acceleration
12.2 Muon Collider
12.2.1 Technical Motivations
12.2.2 Design Concepts
12.2.3 Technology Development
12.2.4 Advanced Muon Collider Concepts
References
13 Cosmic Particle Accelerators
13.1 Introduction
13.2 Cosmic Ray Properties and Implications for Cosmic Ray Sources
13.2.1 Cosmic Ray Spectrum
13.2.2 Cosmic Ray Composition, Cosmic Ray Propagation, and Cosmic Ray Energetics
13.2.3 Cosmic Ray Anisotropy
13.2.4 Electrons and Antiparticles Among Cosmic Rays
13.2.5 Astronomy with Ultra High Energy Cosmic Rays
13.3 Particle Acceleration Mechanisms and Supernova Shocks as Cosmic Accelerators
13.3.1 Shock Acceleration in Supernova Remnants
13.3.2 Pulsars as Particle Sources
13.4 Probing Cosmic-Ray Sources and Propagation Using Gamma-Rays and Neutrinos
13.4.1 Diffuse Gamma Ray Emission: Tracing Cosmic Rays in the Galaxy
13.4.2 Supernova Remnants Viewed in Gamma Rays
13.4.3 Pulsars and Pulsar Wind Nebulae
13.4.4 Other Galactic Systems as Sources of High-Energy Radiation
13.4.5 Particle Acceleration Driven by Supermassive Black Holes
13.5 Outlook
References




پست ها تصادفی