توضیحاتی در مورد کتاب :
مسیر الزامات بالینی تا اجرای فنی با ترجمه روش به فناوری فیلتر میشود. بخش مهمی از آن فیلتر این است که روش ایمن باشد. برای اینکه چنین باشد، درک اینکه چه پارامترهای بالینی بر ایمنی درمان تأثیر میگذارند، و سپس تعیین اینکه چگونه فناوری میتواند بر آن پارامترها تأثیر بگذارد، ضروری است.
این کتاب مقدمهای عملی برای درمان ذرات ارائه میکند. معرفی کامل ابزارها، کاربردهای آنها و سپس جزئیات اجزای مورد نیاز برای اجرای آن را ارائه می دهد. این پایه های تولید تیر و تحویل تیر را توضیح می دهد که برای برآوردن نیازهای بالینی لازم است. این بر رابطه بین الزامات و اجرا از جمله نحوه در نظر گرفتن ایمنی و کیفیت در راه حل تاکید می کند. خواننده یاد می گیرد که بهتر بفهمد چه پارامترهایی برای دستیابی به این اهداف مهم هستند
این منبع مفیدی برای فیزیکدانان در زمینه ذرات درمانی علاوه بر مهندسان زیست پزشکی و پزشکان در زمینه فیزیک شتاب دهنده خواهد بود. همچنین میتواند بهعنوان کتاب درسی برای دورههای فیزیک پزشکی فارغالتحصیل و فیزیک شتابدهنده استفاده شود.
ویژگیهای کلیدی:
- سفری عملی و در دسترس را از الزامات برنامهها تا راهحلهای فنی ارائه میدهد.
>
- یک درمان آموزشی از فناوری زیربنایی ارائه می دهد
- توضیح می دهد که چگونه ایمنی باید در کاربرد این فناوری در نظر گرفته شود و چگونه ایمنی و کیفیت را می توان در سیستم کلی لحاظ کرد.
>
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Dedication
Contents
Chapter 1: Introduction
Chapter 2: Evolution of Medical Particles
Chapter 3: A Personal Historical Perspective
Chapter 4: Flow of Requirements
4.1. Direct Requirements
4.2. Developmental Requirements
Chapter 5: External Beam Systems
Chapter 6: How to Damage Unwanted Cells
6.1. Direct Effects
6.2. Indirect Effects
Chapter 7: Exponentials
7.1. e
7.2. Distributions
7.2.1. Binomial Distribution
7.2.2. Poisson Distribution
7.2.3. Gaussian Distribution
7.2.3.1. Mean
7.2.3.2. Standard Deviation
7.2.3.3. Skewness and Kurtosis
7.2.3.4. Gaussian Algebra
7.2.3.5. Summation of Gaussians
7.3. Interactions
7.3.1. Can Hit the Broad Side of a Barn
7.3.2. Interaction Target
7.3.3. Target Hits
7.3.4. Why Radiotherapy Works Mathematically
7.3.4.1. Tolerances
7.3.5. Attenuation
7.4. Exercises
Chapter 8: Relativistic Dynamics
8.1. Special Relativity (Briefly in This Time Frame)
8.2. Dynamics
8.3. Exercises
Chapter 9: Charged Particle Interactions in Matter
9.1. Energy Loss
9.2. Ionization Potential
9.3. Linear Thickness or Mass Thickness
9.4. Range
9.4.1. Range Sensitivity
9.4.2. Energy Loss, Distal Dose Falloff or Range Spread
9.5. Scattering
9.6. Dependence of the Bragg Peak on the Beam Size
9.7. Energy Loss and Scattering Dependencies
9.8. What Could Go Wrong – 1?
9.9. Exercises
Chapter 10: Review of Charged Particle Motion
10.1. Manipulation of Light Rays
10.2. Electromagnetic Forces
10.3. Equations of Motion
10.3.1. Bending in a Magnetic Field
10.3.2. The Form of the Force
10.3.3. The Equations of Motion in a Magnetic Field
10.4. Effects of Beam Transport Elements
10.4.1. Drift Space
10.4.2. Thin Lens Focusing Elements
10.5. General Ray Coordinate Transformation
10.6. Optical Matrix Examples
10.6.1. Momentum
10.6.2. Longitudinal Position
10.6.3. Transverse Focusing
10.6.3.1. Point-to-Point Focusing
10.6.3.2. Point-to-Parallel Focusing
10.6.3.3. Parallel-to-Point Focusing
10.6.3.4. Achromatic Combined System
10.6.4. Variables and Conditions
10.7. The Orthogonal Direction
10.8. Dipole Focusing
10.8.1. Sector Focusing
10.8.2. Pole Edge Focusing
10.9. Misalignments
10.10. What Could Go Wrong – 2?
10.11. A Beam; A Gaussian Beam
10.11.1. The Ellipse
10.11.2. Phase Space Representation and Equation of the Beam
10.12. Propagation of The Beam
10.12.1. Propagation of a Beam in a Drift Length
10.12.2. Representation of Apertures
10.12.3. Dispersion
10.12.4. The Effect of Multiple Scattering
10.13. Beam Matching Beamlines
10.14. What Could Go Wrong – 3?
10.15. Exercises
Chapter 11: Clinical Perspective of Charged Particle Therapy Beams
11.1. Longitudinal Direction
11.1.1. Beam Range
11.1.2. Distal Penumbra
11.2. Transverse Direction
11.2.1. Field Size
11.2.2. Lateral Penumbra
11.3. Dose Conformance
11.3.1. Dose and Dose Rate
11.3.1.1. Dose
11.3.1.2. Counting Dose (Ionization Chamber)
11.3.1.3. Dose Quantities, Dose Rate and Irradiation Time
11.3.1.4. Maximum Count Rate
11.3.1.5. Dose Rate Considerations
11.3.2. Some Particle Beam Treatment-Related Considerations
11.3.3. Beam Directions
11.3.4. Additional Perspective
11.4. What Could Go Wrong – 4?
11.5. Exercises
Chapter 12: Three-Dimensional Dose Conformation
12.1. Longitudinal Beam Conformance
12.1.1. Degrading Methods
12.1.1.1. Ridge Filter
12.1.1.2. Range Modulator Wheel
12.1.1.3. Beam Current Modulation
12.1.1.4. Other Degrading Methods
12.1.2. Discrete Energy Changes
12.1.3. Range Compensation
12.2. Transverse Beam Conformance By Scattering
12.2.1. Single Scattering
12.2.2. Double Scattering
12.2.2.1. Beam Properties
12.2.2.2. Patient-Specific Hardware
12.2.2.3. Scattering System Components
12.3. Transverse Beam Conformance By Scanning
12.3.1. Scanning Methods
12.3.2. General Description of Scanning
12.3.3. Technical Scanning Delivery Techniques
12.3.3.1. Time- or Dose-Driven
12.3.3.2. Variation of Speed and/or Current
12.3.3.3. Dimensional Priority
12.3.4. Clinical Delivery Styles
12.3.4.1. Uniform Scanning
12.3.4.2. Single Field Uniform Dose
12.3.4.3. Multi Field Delivery
12.3.4.4. Distal Edge Tracking
12.3.5. Beam Motion (Not Patient Motion) Effects
12.3.6. Scanning Irradiation Time
12.3.7. Time Sensitivities to Scanning Hardware
12.3.7.1. Time vs. Dose
12.3.7.2. Time vs. Current
12.3.7.3. Time vs. Range
12.3.7.4. Time vs. SAD
12.3.7.5. Time vs. Magnet Current Ramp Rate
12.3.7.6. Time vs. Beam Off Time
12.3.7.7. Time vs. Energy Change Time
12.3.7.8. Other Considerations
12.3.8. Dose Rate Tolerances
12.3.9. Pulsed Beams
12.3.10. Scanning Hardware
12.3.10.1. Scanning Dipoles
12.3.10.2. Dipole Contribution to Scanning Irradiation Time
12.3.11. Scanning Beam Parameters
12.3.11.1. Static Beam Parameters
12.3.11.2. Transverse Dose Distribution, Penumbra and Modulation
12.3.12. Sensitivities (Scanning)
12.3.13. Scan Patterns
12.3.14. The Effects of the Scanning Nozzle on the Beam Size
12.3.14.1. Chamber and Windows
12.3.14.2. Downstream Materials
12.3.14.3. Influence of the Dipole Exit Window on the Beam
12.3.14.4. Influence of the Large Vacuum Window on the Beam Width
12.3.14.5. Effect of the Air Gap on the Beam Width
12.3.14.6. Beam Widths with Air Gaps Inside Target
12.3.14.7. Effect of Range Shifter on Beam Width
12.3.15. Scanning Control and Requirement Considerations
12.3.15.1. More About Parameters
12.3.16. Faster Scanning Systems
12.3.17. Spreading Beams Summary
12.3.18. How to Build a Scanning System
12.4. What Could Go Wrong – 5?
12.4.1. Longitudinal Spreading
12.4.2. Transverse Spreading
12.5. Exercises
Chapter 13: Accelerator Systems
13.1. Accelerator Technology
13.2. Time Structure of Accelerator Beams
13.3. Cyclotron-Based Beam Production
13.3.1. Phase Slippage
13.3.2. Cyclotron Focusing Effects
13.3.3. Cyclotron Parameters
13.3.3.1. Energy
13.3.3.2. Beam Phase Space Area
13.3.3.3. Current
13.3.3.4. Time Dependence
13.3.3.5. Operability
13.3.3.6. Size
13.4. Degrader and Energy Selection System
13.4.1. Beam Conditions Resulting from a Degrader
13.4.2. Energy Selection System
13.4.3. Degrader to Beamline Collimator Conditions
13.4.4. Optics to Decouple Some Beamline Effects
13.4.5. Degrader and ESS Summary
13.5. Synchrotron-Based Systems
13.5.1. Synchrotron Timing
13.5.2. Equation of Motion (General Case)
13.5.2.1. Interpretation of the Parameters of the Equation of Motion
13.5.3. Relationship Between the Transfer Matrix and the Trajectory Equation
13.5.4. Stability of a Closed Machine Particle Trajectory
13.5.5. And We’re Out of Here
13.5.6. Synchrotron Beam Parameters
13.5.6.1. Energy
13.5.6.2. Beam Phase Space
13.5.6.3. Synchrotron Charges and Currents
13.5.6.4. Timing
13.5.6.5. Cost
13.5.7. Existing Synchrotron Systems
13.5.8. The Future of Synchrotrons
13.6. Accelerators
13.7. What Could Go Wrong – 6?
13.8. Exercises
Chapter 14: Gantries
14.1. Introduction
14.2. Accelerator on a Gantry
14.2.1. Cyclotron on a Gantry
14.2.2. Synchrotron on a Gantry
14.3. Gantry Geometry
14.3.1. Issues Affecting the Gantry Design Parameters
14.3.1.1. Physical Implications of Clinical Issues
14.3.1.2. Physical Implications of Magnetics
14.3.1.3. Desirable Features
14.3.1.4. Compact Gantry Parameters
14.4. Magnetic Spreading Geometry Considerations
14.5. Beam Optics Considerations
14.5.1. Beam Phase Space Conditions at the Gantry Coupling
14.5.2. Minimizing the Gantry Dispersion Function
14.5.2.1. Suppression of Dispersion
14.5.2.2. Momentum Bandwidth
14.5.2.3. Beam Profile for Beam Delivery
14.6. Gantry Examples
14.6.1. High-Level Gantry Requirements
14.6.2. The Corkscrew Gantry
14.6.3. In-Plane Gantry
14.6.4. Compact Gantries
14.7. Additional Gantry Considerations
14.7.1. The Cost of Beam Size
14.7.2. Room Size Matters
14.7.3. There Is No Isocenter
14.8. Gantry – Less Or More?
14.9. What Could Go Wrong – 7?
14.10. Exercises
Chapter 15: Safety in Radiotherapy
15.1. Processes to Raise Safety Awareness
15.2. Introduction to Hazards and Mitigations
15.3. Introduction to Risks and Criticality
15.3.1. Hierarchy of Risk Parameters
15.4. Categories and Qualifiers of Risk
15.4.1. RPN, Risk and Categories
15.4.2. Brute Force Calculation
15.4.3. Binary Combination
15.5. Models and Methodologies
15.5.1. Dominos, Swiss Cheese, But No Wine
15.5.2. FRAM
15.5.3. STAMP
15.5.4. Tools and Methods
15.5.5. Practical Considerations
15.6. Hazard Analysis
15.6.1. Pick a Hazard, Any Hazard
15.6.2. Identify a Subsystem
15.6.3. Hazard Table
15.6.4. Radiotherapy Radiation Hazard and Risk Examples
15.7. Failure Mode and Effects Analysis (FMEA)
15.7.1. FMEA Example
15.7.2. FMEA Limitations
15.8. Mitigation of Risk
15.8.1. Training
15.8.2. Communication
15.8.3. Standard Operating Procedures
15.8.4. Equipment Design
15.9. Quality Assurance
15.9.1. Beam Quality Assurance
15.9.2. Clinical and Machine Parameters
15.9.3. Instrument QA
15.9.4. How Often to Measure
15.10. Quick Quality Assurance
15.11. Beyond Safety
15.12. What Could Go Wrong – 8?
15.13. Exercises
Chapter 16: Sensitivities and Tolerances: Scattering
16.1. Methodology
16.1.1. Input Beam Perturbations
16.1.2. Component Perturbations: Second Scatterer
16.1.3. Correction Capability
16.1.4. Ionization Chamber Perturbations
16.1.5. Range Modulator Perturbations
16.2. Discussion
Chapter 17: From Clinical to Technical Tolerances: Scanning
17.1. The Chicken or the Egg
17.2. The Acceptance Criteria
17.3. Gamma Index
17.4. Tolerances
17.4.1. Clinical Cases Used for the Study
17.4.2. Error Simulations
17.4.2.1. Accuracy vs. Reproducibility
17.4.2.2. Error Introduction
17.4.3. Evaluation of Tolerances
17.5. Flow to Technical Tolerances
17.5.1. Beam Range
17.5.2. Beam Size
17.5.3. Dose Weight
17.5.4. Beam Position
17.6. Exercises
Chapter 18: Afterword
Acknowledgments
Appendix A: Particle Therapy Facilities (as of June 2021)
Appendix B: Some Useful Constants
Appendix C: Hazard Topics
Appendix D: Beam QA Frequency Possibility
Appendix E: Some Element and Compound Parameters
Index
توضیحاتی در مورد کتاب به زبان اصلی :
The path from clinical requirements to technical implementation is filtered by the translation of the modality to the technology. An important part of that filter is that the modality be safe. For that to be the case it is imperative to understand what clinical parameters affect the safety of a treatment, and then determine how the technology can affect those parameters.
This book provides a practical introduction to particle therapy. It provides a thorough introduction to the tools, their applications, and then details the components that are needed to implement it. It explains the foundations of beam production and beam delivery which serve to meet the necessary clinical requirements. It emphasizes the relationship between requirements and implementation including how safety and quality is considered and implemented in the solution. The reader will learn to better understand what parameters are important to achieve these goals
It will be a useful resource for physicists in the field of particle therapy in addition to biomedical engineers and practitioners in the field of accelerator physics. It can also be used as a textbook for graduate medical physics and accelerator physics courses.
Key features:
- Presents a practical and accessible journey from application requirements to technical solutions
- Provides a pedagogic treatment of the underlying technology
- Describes how safety is to be considered in the application of this technology and how safety and quality can be factored into the overall system.