Particle Therapy Technology for Safe Treatment

دانلود کتاب Particle Therapy Technology for Safe Treatment

56000 تومان موجود

کتاب فناوری ذرات درمانی برای درمان ایمن نسخه زبان اصلی

دانلود کتاب فناوری ذرات درمانی برای درمان ایمن بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 7


توضیحاتی در مورد کتاب Particle Therapy Technology for Safe Treatment

نام کتاب : Particle Therapy Technology for Safe Treatment
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : فناوری ذرات درمانی برای درمان ایمن
سری :
نویسندگان :
ناشر : CRC Press
سال نشر : 2022
تعداد صفحات : 376 [395]
ISBN (شابک) : 0367640147 , 9780367640149
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 29 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :




مسیر الزامات بالینی تا اجرای فنی با ترجمه روش به فناوری فیلتر می‌شود. بخش مهمی از آن فیلتر این است که روش ایمن باشد. برای اینکه چنین باشد، درک اینکه چه پارامترهای بالینی بر ایمنی درمان تأثیر می‌گذارند، و سپس تعیین اینکه چگونه فناوری می‌تواند بر آن پارامترها تأثیر بگذارد، ضروری است.

این کتاب مقدمه‌ای عملی برای درمان ذرات ارائه می‌کند. معرفی کامل ابزارها، کاربردهای آنها و سپس جزئیات اجزای مورد نیاز برای اجرای آن را ارائه می دهد. این پایه های تولید تیر و تحویل تیر را توضیح می دهد که برای برآوردن نیازهای بالینی لازم است. این بر رابطه بین الزامات و اجرا از جمله نحوه در نظر گرفتن ایمنی و کیفیت در راه حل تاکید می کند. خواننده یاد می گیرد که بهتر بفهمد چه پارامترهایی برای دستیابی به این اهداف مهم هستند

این منبع مفیدی برای فیزیکدانان در زمینه ذرات درمانی علاوه بر مهندسان زیست پزشکی و پزشکان در زمینه فیزیک شتاب دهنده خواهد بود. همچنین می‌تواند به‌عنوان کتاب درسی برای دوره‌های فیزیک پزشکی فارغ‌التحصیل و فیزیک شتاب‌دهنده استفاده شود.

ویژگی‌های کلیدی:

- سفری عملی و در دسترس را از الزامات برنامه‌ها تا راه‌حل‌های فنی ارائه می‌دهد.

>

- یک درمان آموزشی از فناوری زیربنایی ارائه می دهد

- توضیح می دهد که چگونه ایمنی باید در کاربرد این فناوری در نظر گرفته شود و چگونه ایمنی و کیفیت را می توان در سیستم کلی لحاظ کرد.

>

فهرست مطالب :


Cover Half Title Title Page Copyright Page Dedication Contents Chapter 1: Introduction Chapter 2: Evolution of Medical Particles Chapter 3: A Personal Historical Perspective Chapter 4: Flow of Requirements 4.1. Direct Requirements 4.2. Developmental Requirements Chapter 5: External Beam Systems Chapter 6: How to Damage Unwanted Cells 6.1. Direct Effects 6.2. Indirect Effects Chapter 7: Exponentials 7.1. e 7.2. Distributions 7.2.1. Binomial Distribution 7.2.2. Poisson Distribution 7.2.3. Gaussian Distribution 7.2.3.1. Mean 7.2.3.2. Standard Deviation 7.2.3.3. Skewness and Kurtosis 7.2.3.4. Gaussian Algebra 7.2.3.5. Summation of Gaussians 7.3. Interactions 7.3.1. Can Hit the Broad Side of a Barn 7.3.2. Interaction Target 7.3.3. Target Hits 7.3.4. Why Radiotherapy Works Mathematically 7.3.4.1. Tolerances 7.3.5. Attenuation 7.4. Exercises Chapter 8: Relativistic Dynamics 8.1. Special Relativity (Briefly in This Time Frame) 8.2. Dynamics 8.3. Exercises Chapter 9: Charged Particle Interactions in Matter 9.1. Energy Loss 9.2. Ionization Potential 9.3. Linear Thickness or Mass Thickness 9.4. Range 9.4.1. Range Sensitivity 9.4.2. Energy Loss, Distal Dose Falloff or Range Spread 9.5. Scattering 9.6. Dependence of the Bragg Peak on the Beam Size 9.7. Energy Loss and Scattering Dependencies 9.8. What Could Go Wrong – 1? 9.9. Exercises Chapter 10: Review of Charged Particle Motion 10.1. Manipulation of Light Rays 10.2. Electromagnetic Forces 10.3. Equations of Motion 10.3.1. Bending in a Magnetic Field 10.3.2. The Form of the Force 10.3.3. The Equations of Motion in a Magnetic Field 10.4. Effects of Beam Transport Elements 10.4.1. Drift Space 10.4.2. Thin Lens Focusing Elements 10.5. General Ray Coordinate Transformation 10.6. Optical Matrix Examples 10.6.1. Momentum 10.6.2. Longitudinal Position 10.6.3. Transverse Focusing 10.6.3.1. Point-to-Point Focusing 10.6.3.2. Point-to-Parallel Focusing 10.6.3.3. Parallel-to-Point Focusing 10.6.3.4. Achromatic Combined System 10.6.4. Variables and Conditions 10.7. The Orthogonal Direction 10.8. Dipole Focusing 10.8.1. Sector Focusing 10.8.2. Pole Edge Focusing 10.9. Misalignments 10.10. What Could Go Wrong – 2? 10.11. A Beam; A Gaussian Beam 10.11.1. The Ellipse 10.11.2. Phase Space Representation and Equation of the Beam 10.12. Propagation of The Beam 10.12.1. Propagation of a Beam in a Drift Length 10.12.2. Representation of Apertures 10.12.3. Dispersion 10.12.4. The Effect of Multiple Scattering 10.13. Beam Matching Beamlines 10.14. What Could Go Wrong – 3? 10.15. Exercises Chapter 11: Clinical Perspective of Charged Particle Therapy Beams 11.1. Longitudinal Direction 11.1.1. Beam Range 11.1.2. Distal Penumbra 11.2. Transverse Direction 11.2.1. Field Size 11.2.2. Lateral Penumbra 11.3. Dose Conformance 11.3.1. Dose and Dose Rate 11.3.1.1. Dose 11.3.1.2. Counting Dose (Ionization Chamber) 11.3.1.3. Dose Quantities, Dose Rate and Irradiation Time 11.3.1.4. Maximum Count Rate 11.3.1.5. Dose Rate Considerations 11.3.2. Some Particle Beam Treatment-Related Considerations 11.3.3. Beam Directions 11.3.4. Additional Perspective 11.4. What Could Go Wrong – 4? 11.5. Exercises Chapter 12: Three-Dimensional Dose Conformation 12.1. Longitudinal Beam Conformance 12.1.1. Degrading Methods 12.1.1.1. Ridge Filter 12.1.1.2. Range Modulator Wheel 12.1.1.3. Beam Current Modulation 12.1.1.4. Other Degrading Methods 12.1.2. Discrete Energy Changes 12.1.3. Range Compensation 12.2. Transverse Beam Conformance By Scattering 12.2.1. Single Scattering 12.2.2. Double Scattering 12.2.2.1. Beam Properties 12.2.2.2. Patient-Specific Hardware 12.2.2.3. Scattering System Components 12.3. Transverse Beam Conformance By Scanning 12.3.1. Scanning Methods 12.3.2. General Description of Scanning 12.3.3. Technical Scanning Delivery Techniques 12.3.3.1. Time- or Dose-Driven 12.3.3.2. Variation of Speed and/or Current 12.3.3.3. Dimensional Priority 12.3.4. Clinical Delivery Styles 12.3.4.1. Uniform Scanning 12.3.4.2. Single Field Uniform Dose 12.3.4.3. Multi Field Delivery 12.3.4.4. Distal Edge Tracking 12.3.5. Beam Motion (Not Patient Motion) Effects 12.3.6. Scanning Irradiation Time 12.3.7. Time Sensitivities to Scanning Hardware 12.3.7.1. Time vs. Dose 12.3.7.2. Time vs. Current 12.3.7.3. Time vs. Range 12.3.7.4. Time vs. SAD 12.3.7.5. Time vs. Magnet Current Ramp Rate 12.3.7.6. Time vs. Beam Off Time 12.3.7.7. Time vs. Energy Change Time 12.3.7.8. Other Considerations 12.3.8. Dose Rate Tolerances 12.3.9. Pulsed Beams 12.3.10. Scanning Hardware 12.3.10.1. Scanning Dipoles 12.3.10.2. Dipole Contribution to Scanning Irradiation Time 12.3.11. Scanning Beam Parameters 12.3.11.1. Static Beam Parameters 12.3.11.2. Transverse Dose Distribution, Penumbra and Modulation 12.3.12. Sensitivities (Scanning) 12.3.13. Scan Patterns 12.3.14. The Effects of the Scanning Nozzle on the Beam Size 12.3.14.1. Chamber and Windows 12.3.14.2. Downstream Materials 12.3.14.3. Influence of the Dipole Exit Window on the Beam 12.3.14.4. Influence of the Large Vacuum Window on the Beam Width 12.3.14.5. Effect of the Air Gap on the Beam Width 12.3.14.6. Beam Widths with Air Gaps Inside Target 12.3.14.7. Effect of Range Shifter on Beam Width 12.3.15. Scanning Control and Requirement Considerations 12.3.15.1. More About Parameters 12.3.16. Faster Scanning Systems 12.3.17. Spreading Beams Summary 12.3.18. How to Build a Scanning System 12.4. What Could Go Wrong – 5? 12.4.1. Longitudinal Spreading 12.4.2. Transverse Spreading 12.5. Exercises Chapter 13: Accelerator Systems 13.1. Accelerator Technology 13.2. Time Structure of Accelerator Beams 13.3. Cyclotron-Based Beam Production 13.3.1. Phase Slippage 13.3.2. Cyclotron Focusing Effects 13.3.3. Cyclotron Parameters 13.3.3.1. Energy 13.3.3.2. Beam Phase Space Area 13.3.3.3. Current 13.3.3.4. Time Dependence 13.3.3.5. Operability 13.3.3.6. Size 13.4. Degrader and Energy Selection System 13.4.1. Beam Conditions Resulting from a Degrader 13.4.2. Energy Selection System 13.4.3. Degrader to Beamline Collimator Conditions 13.4.4. Optics to Decouple Some Beamline Effects 13.4.5. Degrader and ESS Summary 13.5. Synchrotron-Based Systems 13.5.1. Synchrotron Timing 13.5.2. Equation of Motion (General Case) 13.5.2.1. Interpretation of the Parameters of the Equation of Motion 13.5.3. Relationship Between the Transfer Matrix and the Trajectory Equation 13.5.4. Stability of a Closed Machine Particle Trajectory 13.5.5. And We’re Out of Here 13.5.6. Synchrotron Beam Parameters 13.5.6.1. Energy 13.5.6.2. Beam Phase Space 13.5.6.3. Synchrotron Charges and Currents 13.5.6.4. Timing 13.5.6.5. Cost 13.5.7. Existing Synchrotron Systems 13.5.8. The Future of Synchrotrons 13.6. Accelerators 13.7. What Could Go Wrong – 6? 13.8. Exercises Chapter 14: Gantries 14.1. Introduction 14.2. Accelerator on a Gantry 14.2.1. Cyclotron on a Gantry 14.2.2. Synchrotron on a Gantry 14.3. Gantry Geometry 14.3.1. Issues Affecting the Gantry Design Parameters 14.3.1.1. Physical Implications of Clinical Issues 14.3.1.2. Physical Implications of Magnetics 14.3.1.3. Desirable Features 14.3.1.4. Compact Gantry Parameters 14.4. Magnetic Spreading Geometry Considerations 14.5. Beam Optics Considerations 14.5.1. Beam Phase Space Conditions at the Gantry Coupling 14.5.2. Minimizing the Gantry Dispersion Function 14.5.2.1. Suppression of Dispersion 14.5.2.2. Momentum Bandwidth 14.5.2.3. Beam Profile for Beam Delivery 14.6. Gantry Examples 14.6.1. High-Level Gantry Requirements 14.6.2. The Corkscrew Gantry 14.6.3. In-Plane Gantry 14.6.4. Compact Gantries 14.7. Additional Gantry Considerations 14.7.1. The Cost of Beam Size 14.7.2. Room Size Matters 14.7.3. There Is No Isocenter 14.8. Gantry – Less Or More? 14.9. What Could Go Wrong – 7? 14.10. Exercises Chapter 15: Safety in Radiotherapy 15.1. Processes to Raise Safety Awareness 15.2. Introduction to Hazards and Mitigations 15.3. Introduction to Risks and Criticality 15.3.1. Hierarchy of Risk Parameters 15.4. Categories and Qualifiers of Risk 15.4.1. RPN, Risk and Categories 15.4.2. Brute Force Calculation 15.4.3. Binary Combination 15.5. Models and Methodologies 15.5.1. Dominos, Swiss Cheese, But No Wine 15.5.2. FRAM 15.5.3. STAMP 15.5.4. Tools and Methods 15.5.5. Practical Considerations 15.6. Hazard Analysis 15.6.1. Pick a Hazard, Any Hazard 15.6.2. Identify a Subsystem 15.6.3. Hazard Table 15.6.4. Radiotherapy Radiation Hazard and Risk Examples 15.7. Failure Mode and Effects Analysis (FMEA) 15.7.1. FMEA Example 15.7.2. FMEA Limitations 15.8. Mitigation of Risk 15.8.1. Training 15.8.2. Communication 15.8.3. Standard Operating Procedures 15.8.4. Equipment Design 15.9. Quality Assurance 15.9.1. Beam Quality Assurance 15.9.2. Clinical and Machine Parameters 15.9.3. Instrument QA 15.9.4. How Often to Measure 15.10. Quick Quality Assurance 15.11. Beyond Safety 15.12. What Could Go Wrong – 8? 15.13. Exercises Chapter 16: Sensitivities and Tolerances: Scattering 16.1. Methodology 16.1.1. Input Beam Perturbations 16.1.2. Component Perturbations: Second Scatterer 16.1.3. Correction Capability 16.1.4. Ionization Chamber Perturbations 16.1.5. Range Modulator Perturbations 16.2. Discussion Chapter 17: From Clinical to Technical Tolerances: Scanning 17.1. The Chicken or the Egg 17.2. The Acceptance Criteria 17.3. Gamma Index 17.4. Tolerances 17.4.1. Clinical Cases Used for the Study 17.4.2. Error Simulations 17.4.2.1. Accuracy vs. Reproducibility 17.4.2.2. Error Introduction 17.4.3. Evaluation of Tolerances 17.5. Flow to Technical Tolerances 17.5.1. Beam Range 17.5.2. Beam Size 17.5.3. Dose Weight 17.5.4. Beam Position 17.6. Exercises Chapter 18: Afterword Acknowledgments Appendix A: Particle Therapy Facilities (as of June 2021) Appendix B: Some Useful Constants Appendix C: Hazard Topics Appendix D: Beam QA Frequency Possibility Appendix E: Some Element and Compound Parameters Index

توضیحاتی در مورد کتاب به زبان اصلی :


The path from clinical requirements to technical implementation is filtered by the translation of the modality to the technology. An important part of that filter is that the modality be safe. For that to be the case it is imperative to understand what clinical parameters affect the safety of a treatment, and then determine how the technology can affect those parameters.

This book provides a practical introduction to particle therapy. It provides a thorough introduction to the tools, their applications, and then details the components that are needed to implement it. It explains the foundations of beam production and beam delivery which serve to meet the necessary clinical requirements. It emphasizes the relationship between requirements and implementation including how safety and quality is considered and implemented in the solution. The reader will learn to better understand what parameters are important to achieve these goals

It will be a useful resource for physicists in the field of particle therapy in addition to biomedical engineers and practitioners in the field of accelerator physics. It can also be used as a textbook for graduate medical physics and accelerator physics courses.

Key features:

- Presents a practical and accessible journey from application requirements to technical solutions

- Provides a pedagogic treatment of the underlying technology

- Describes how safety is to be considered in the application of this technology and how safety and quality can be factored into the overall system.




پست ها تصادفی