PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application

دانلود کتاب PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application

34000 تومان موجود

کتاب پیل‌های سوختی PEM: مبانی، فناوری‌های پیشرفته و کاربرد عملی نسخه زبان اصلی

دانلود کتاب پیل‌های سوختی PEM: مبانی، فناوری‌های پیشرفته و کاربرد عملی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application

نام کتاب : PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application
ویرایش : 1
عنوان ترجمه شده به فارسی : پیل‌های سوختی PEM: مبانی، فناوری‌های پیشرفته و کاربرد عملی
سری :
نویسندگان :
ناشر : Elsevier
سال نشر : 2021
تعداد صفحات : 584
ISBN (شابک) : 0128237082 , 9780128237083
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 12 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Front Cover
PEM Fuel Cells
Copyright Page
Dedication
Contents
List of contributors
About the editor
Foreword
Acknowledgments
1 Proton exchange membrane fuel cells: fundamentals, advanced technologies, and practical applications
1.1 Introduction
1.2 Proton exchange membrane fuel cells
1.3 Components of PEM fuel cells
1.3.1 Membrane
1.3.2 Anode and cathode electrodes
1.3.3 Bipolar plates
1.3.4 Other components
1.4 Practical applications of PEM fuel cells
1.4.1 Portable power systems
1.4.2 Transportation
1.5 Summary
References
2 Proton exchange membrane for microbial fuel cells
2.1 Biofuel cells
2.2 Microbial fuel cell
2.3 Types of ion exchange membrane in microbial fuel cell
2.3.1 Anion exchange membrane
2.3.2 Bipolar membrane
2.3.3 Cation exchange membrane
2.4 Essential cation exchange membrane properties and its determination
2.4.1 Water uptake
2.4.2 Proton conductivity
2.4.3 Extra ion transport
2.4.4 Ion exchange capacity
2.4.5 pH splitting
2.4.6 Oxygen intrusion
2.4.7 Internal resistance
2.4.8 Substrate crossover and biofouling
2.5 Polymeric membranes
2.5.1 Polymer-polymer composites
2.5.2 Metal-based nanopolymer composites
2.5.3 Carbon-polymer composites
2.6 Salt bridge
2.7 Ceramic membranes
2.8 Membrane-less microbial fuel cell
2.9 Conclusion
References
3 Electrocatalysts: selectivity and utilization
3.1 Introduction
3.1.1 Electrocatalyst and its uses
3.1.2 Types of electrocatalysts
3.1.3 Selectivity and utilization
3.2 Optimization parameters
3.2.1 Shape modification
3.2.2 Facet arrangement
3.2.3 Ionomer/catalyst interaction
3.3 Summary
References
4 Bipolar plates for the permeable exchange membrane: carbon nanotubes as an alternative
4.1 Introduction
4.2 Polymer electrolyte membrane fuel cells
4.3 Carbon nanotubes
4.4 Researches on permeable exchange membrane fuel cells and carbon nanotubes
4.5 Discussion
4.6 Other applications
4.7 Conclusion
Acknowledgments
References
5 Gas diffusion layer for proton exchange membrane fuel cells
5.1 Introduction
5.2 Gas diffusion layer materials
5.3 Gas diffusion layer properties
5.3.1 Overview
5.3.2 Structural properties
5.3.2.1 Porosity
5.3.2.2 Thickness
5.3.2.3 Pore size distribution
5.3.3 Transport properties
5.3.3.1 Diffusivity
5.3.3.2 Permeability
5.3.3.3 Wettability
5.3.3.4 Thermal properties
5.3.3.5 Electrical properties
5.3.4 Gas diffusion layer compressibility
5.4 Modifications of gas diffusion layers
5.4.1 Hydrophobization
5.4.2 Microporous layer application on gas diffusion layer substrate
5.4.2.1 Effect of microporous layer properties on proton exchange membrane fuel cell performance
5.4.3 Structural modifications
5.5 Durability of gas diffusion layer
5.6 Summary
References
6 Thermodynamics and operating conditions for proton exchange membrane fuel cells
6.1 Introduction
6.2 Hydrogen higher and lower heating value
6.3 Thermodynamics of fuel cells
6.4 First law analysis
6.5 Second law analysis
6.6 Effect of cell conditions of reversible voltage
6.6.1 Effect of temperature on reversible voltage
6.6.2 Effect of pressure on reversible voltage
6.6.3 Effect of reactant concentration on reversible
6.7 Efficiency of fuel cells
6.7.1 First law efficiency
6.7.2 Real fuel cell efficiency
6.8 Chapter summary
References
7 Proton exchange membrane testing and diagnostics
7.1 General overview
7.2 Testing of proton exchange membrane fuel cell
7.2.1 Pretesting procedures
7.2.1.1 Validation of cell assembly
7.2.1.2 Preparation of the cell
7.2.1.2.1 Break-in/start-up
7.2.1.2.2 Conditioning
7.2.2 Testing techniques and standard protocols
7.2.2.1 Performance testing
7.2.2.2 Durability testing
7.2.3 Posttesting procedures
7.2.3.1 Noninvasive diagnostic procedures
7.2.3.2 Clean-up of the cell
7.2.3.3 Invasive diagnostic procedures
7.2.3.4 Verification of the assembly
7.2.3.5 Destructive postmortem
7.3 Diagnostic tools for proton exchange membrane fuel cell
7.3.1 Polarization curve
7.3.2 Cyclic voltammetry
7.3.3 Electrochemical impedance spectroscopy
7.3.4 Current mapping
7.3.5 Temperature mapping
7.3.6 Cathode discharge
7.4 Summary
References
8 Charge and mass transport and modeling principles in proton-exchange membrane (PEM) fuel cells
8.1 Introduction
8.2 PEM thermodynamics and electrochemistry
8.2.1 Electrochemical reaction
8.2.2 Gibbs free energy and electrical work
8.2.3 Electrical potentials
8.2.3.1 Temperature effects
8.2.3.2 Pressure effects
8.2.3.2.1 Changes due to concentration
8.2.4 Tafel equation
8.3 Charge and mass transport in membrane-electrode-assembly
8.3.1 Charge transport
8.3.1.1 Charge flux
8.3.1.2 Fuel cell charge transport resistance and voltage losses
8.3.1.3 Conductivity
8.3.2 Mass transport
8.3.2.1 Diffusion
8.3.2.2 Advection mass transport
8.4 Modeling mass transport in a fuel cell
8.4.1 Mathematical models
8.4.2 Modeling voltage
8.4.3 Numerical solution
8.4.3.1 Computational fluid dynamics
8.4.3.2 Lattice Boltzmann methods
8.5 Closing remarks
References
9 Degradation and failure modes in proton exchange membrane fuel cells
9.1 Introduction
9.2 Failure modes and degradation
9.2.1 Membrane degradation
9.2.1.1 Chemical/electrochemical degradation of proton exchange membrane
9.2.2 Mechanical degradation of proton exchange membrane
9.2.2.1 Thermal degradation of proton exchange membrane
9.2.3 Catalyst degradation
9.2.3.1 Pt degradation
9.2.3.2 Carbon corrosion
9.2.3.3 Ionomer decomposition
9.2.4 Degradation of gas diffusion layers
9.2.4.1 Chemical degradation of gas diffusion layers
9.2.4.2 Mechanical degradation of gas diffusion layers
9.2.5 Degradation of bipolar plates
9.2.6 Degradation of other components
9.3 Stressors in proton exchange membrane fuel cells
9.3.1 Open-circuit voltage
9.3.2 Start/stop cycling
9.3.3 Thermal cycling and freeze/thaw cycling
9.3.4 Reactant starvation
9.3.5 Fuel impurities
9.3.5.1 COx poisoning
9.3.5.2 Sulfur poisoning
9.3.5.3 Other impurities
References
10 High-temperature proton exchange membrane—an insight
10.1 Introduction
10.2 HT-PEMFC materials
10.2.1 Membrane
10.2.2 Catalyst and catalyst layer
10.2.3 Bipolar plates
10.3 HT-PEMFC stacks and systems
10.4 Durability in HT-PEMFC
10.5 Degradation mechanisms: materials
10.6 Applications of HT-PEMFC
10.7 Conclusion
Acknowledgments
References
11 Advanced modifications in nonnoble materials for proton exchange membrane
11.1 Introduction
11.2 Role of noble meatal (Pt) catalyst
11.3 Alternatives to pure platinum
11.3.1 Advances in nonnoble supported Pt catalyst
11.3.2 Ordered Pt-noble metal (Pt-M) alloys/metal alloying
11.4 Features of nonnoble materials for proton exchange membrane fuel cells
11.5 Nonnoble materials for proton exchange membrane fuel cells
11.5.1 Transition metal carbides as oxygen reduction reaction catalyst/support
11.5.1.1 Advances and modifications in transition metal carbides
11.5.2 Modifications in Pt-free nonnoble materials
11.5.3 Advances in nonnoble M-N-C catalysts in the form of metal organic framework precursors
11.6 Conclusion
11.7 Future perspective
References
12 Technological risks and durability issues for the Proton Exchange Membrane Fuel Cell technology
12.1 Introduction
12.2 Working of proton exchange membrane fuel cells
12.3 Major challenges in proton exchange membrane fuel cells
12.4 Sluggish oxygen reduction reaction kinetics
12.5 Effect of electrocatalysts and carbon support materials
12.6 Durability issues and deterioration mechanism
12.6.1 Study on start-up/shut-down cycling
12.6.2 Reversal current decay mechanism
12.6.3 Fuel starvation
12.6.4 Mechanism of carbon corrosion
12.6.5 Catalyst dissolution and Ostwald ripening
12.6.6 Role of catalyst size in catalyst loss
12.6.7 Catalyst detachment/agglomeration
12.7 Conclusions
Acknowledgments
References
Further reading
13 Porous media flow field for proton exchange membrane fuel cells
13.1 Introduction
13.2 Structure of porous media flow field
13.2.1 Foam material
13.2.2 3D fine mesh
13.2.3 Others
13.3 Material property of porous media flow field
13.3.1 Structure reconstruction
13.3.2 Permeability and pressure drop
13.3.3 Heat transfer
13.3.4 Two-phase flow
13.3.4.1 Volume-of-fluid model
13.3.4.2 Mixture (M2) and two-fluid model
13.4 Porous media flow field performance
13.4.1 Experiment
13.4.2 Simulation
13.4.2.1 Foam flow filed
13.4.2.2 3D fine mesh flow filed
13.4.3 Data-driven surrogate model
13.5 Summary
References
14 Automotive applications of PEM technology
14.1 Fuel cells (FCs) in transportation applications
14.1.1 Transportation application
14.1.1.1 Cars
14.1.1.2 Buses
14.1.1.3 Trucks
14.1.1.4 Forklifts
14.1.1.5 Train and trams
14.1.1.6 Underwater vehicles
14.1.1.7 Airplanes
14.1.2 Other applications
14.2 FC drive train configuration
14.2.1 ICEV drive train configuration
14.2.2 BEV drive train configuration
14.2.3 HEV drive train configuration
14.2.4 FCV drive train configuration
14.2.4.1 FC direct to electrical motor
14.2.4.2 FC parallel with energy storage system
14.2.4.3 DC/DC converter in a parallel configuration
14.2.4.4 Balance of plants
14.3 FC market
14.4 Well to wheel greenhouse gas emission of cars
14.4.1 Tank to wheel emission and efficiency
14.4.2 Well to tank emission and efficiency
14.4.3 Well to wheel emission and efficiency
14.4.4 Review on literature of greenhouse gas analysis
14.5 FC manufacturing cost
14.6 Total life cycle cost of the vehicle
14.7 Latest progress in PEM automotive applications
14.7.1 Performance improvement
14.7.2 Durability and fuel economy improvement due to the energy management strategies
14.7.3 Membrane electrode assembly performance and durability
14.7.4 Water management
14.7.5 Heat management
14.7.6 Cold starts
14.7.7 Hydrogen supplying, refueling and tank storage
14.8 Latest industrial progress in FCVs
14.8.1 Performance improvement
14.8.2 Water management development
14.8.3 Heat management and cold start
14.8.4 Balance of plant progress and packaging development
References
15 Economic, business, technical, and commercialization hindrances for the polymer electrolyte membrane fuel cell
15.1 Overview of PEMFC technology
15.2 Challenges in PEMFC technology
15.2.1 Challenges for active materials
15.2.2 Thermodynamic challenges for PEMFC
15.2.3 Performance of PEMFC
15.3 Technical challenges
15.3.1 Stationary power systems (comparison among the fuel cell technologies)
15.3.2 Transportation systems
15.3.3 Auxiliary power systems and early market challenges
15.4 Conclusions
References
16 Configuration of proton exchange membrane fuel cell gas and cooling flow fields
16.1 Introduction
16.2 Bipolar plates
16.3 Flow channels and cooling channels
16.3.1 Functions of gas channels
16.3.2 Functions of cooling channels
16.4 Shape and size of gas flow channels and cooling channels
16.5 Flow field orientation
16.6 Configurations of gas and cooling channels
16.6.1 Parallel straight
16.6.1.1 Cathode and anode gas channels
16.6.1.2 Cooling channels
16.6.2 Single-channel serpentine and spiral channel arrangement
16.6.2.1 Cathode and anode gas channels
16.6.2.2 Cooling channels
16.6.3 Multichannel serpentine arrangement
16.6.3.1 Cathode and anode gas channels
16.6.3.2 Cooling channels
16.6.4 Pin-type flow field
16.6.5 Integrated flow field
16.6.6 Interdigitated design
16.6.7 Nature-inspired designs: fractal arrangement and biomimetic design
16.6.8 Metal foam as distributor of gas flow or cooling fluid
References
17 Nanocatalysts for proton exchange fuel cells: design, preparation, and utilization
17.1 Introduction
17.2 Fundamentals of the oxygen reduction reaction mechanism
17.2.1 The hydrogen oxidation and oxygen reduction reactions
17.2.2 The oxygen reduction reaction mechanism on platinum catalysts
17.2.2.1 The oxygen reduction reaction mechanism in acidic and alkaline electrolytes
17.2.2.2 Dissociative reaction pathways
17.2.2.3 Associative reaction pathways
17.2.3 Electrochemical methods for the analysis of the oxygen reduction reaction
17.2.3.1 The electrochemical set-up
17.2.3.2 The complete cyclic voltammetry profile
17.2.3.2.1 Platinum oxidation
17.2.3.2.2 Platinum reduction
17.2.3.2.3 Hydrogen adsorption and desorption
17.2.3.2.4 The electrochemically active surface area
17.3 The science behind pure metal catalysts
17.3.1 The d-band theory
17.3.1.1 Metal bands and the Fermi level
17.3.1.2 Bonding between the catalyst and the adsorbate
17.3.1.3 Transition metal catalyst trends
17.3.2 Volcano plots and the Sabatier principle
17.3.2.1 The Sabatier principle
17.3.2.2 Volcano plots in acidic and alkaline electrolytes
17.4 Design parameters for optimizing catalyst composition
17.4.1 Optimization of adsorption strength on pure metal catalysts
17.4.1.1 Effects of shifting the d-band center
17.4.1.2 Effects of crystalline facets on adsorption strength
17.4.1.3 Effects of nanoparticle shape on adsorption strength
17.4.1.4 On the dynamics of catalyst structures
17.4.2 Variations among catalyst materials
17.4.2.1 Variations in the effects of facets between different metal catalysts
17.4.3 Optimization of adsorption strength on multimetallic catalysts
17.4.3.1 d-Band shifts with multimetallic catalysts
17.4.3.2 Volcano trends for multimetallic catalysts
17.4.3.3 Effects of alloying on the oxygen reduction reaction mechanism
17.4.3.4 Effects of core–shell structures on the thermodynamic pathway
17.4.3.5 Variations in the thermodynamic pathway on nonprecious metal catalysts
17.5 Design parameters for optimizing catalyst structure
17.5.1 Defining catalysts dimensions, morphology, and composition
17.5.1.1 Size and shape control during nanoparticle synthesis
17.5.1.2 Composition control
17.5.1.3 Surface engineering
17.5.1.4 Geometry control
17.5.2 Nanomaterials for the oxygen reduction reaction and techniques for their synthesis
17.5.2.1 Core–shell structures
17.5.2.2 Hollow nanostructures
17.5.2.3 Nanowires
17.5.2.4 Porous structures
17.5.3 Platinum clusters and single-atom catalysts
17.6 Overview of synthetic and fabrication methods used to prepare membrane electrode assemblies
17.6.1 Requirements for optimizing a membrane electrode assembly
17.6.2 Methods for production of membrane electrode assemblies
17.6.2.1 Catalyst-coated gas diffusion layers
17.6.2.2 Catalyst-coated membranes
17.6.3 Catalyst-coating methods
17.6.3.1 Dry powder spraying
17.6.3.2 Decal transfer method
17.6.3.3 Screen printing
17.6.3.4 Inkjet printing technology
17.6.3.5 Catalyst sprayed membrane under irradiation
17.6.3.6 Ultrasonic spray
17.6.3.7 Electrospraying
17.6.3.8 Electrophoretic deposition
17.6.3.9 Electrodeposition
17.6.3.10 Physical vapor deposition
17.6.3.11 Chemical vapor deposition
17.7 Conclusion
Acknowledgments
References
Index
Back Cover




پست ها تصادفی