Photoreactors in Advanced Oxidation Process: The Future of Wastewater Treatment

دانلود کتاب Photoreactors in Advanced Oxidation Process: The Future of Wastewater Treatment

32000 تومان موجود

کتاب فوتو راکتورها در فرآیند اکسیداسیون پیشرفته: آینده تصفیه فاضلاب نسخه زبان اصلی

دانلود کتاب فوتو راکتورها در فرآیند اکسیداسیون پیشرفته: آینده تصفیه فاضلاب بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب Photoreactors in Advanced Oxidation Process: The Future of Wastewater Treatment

نام کتاب : Photoreactors in Advanced Oxidation Process: The Future of Wastewater Treatment
عنوان ترجمه شده به فارسی : فوتو راکتورها در فرآیند اکسیداسیون پیشرفته: آینده تصفیه فاضلاب
سری :
نویسندگان : , ,
ناشر : Wiley-Scrivener
سال نشر : 2023
تعداد صفحات : 360
ISBN (شابک) : 139416629X , 9781394166299
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 23 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Title Page
Copyright Page
Contents
Preface
Part 1: Advances in Photocatalysts Synthesis
Chapter 1 Advancement and New Challenges in Heterogeneous Photocatalysts for Industrial Wastewater Treatment in the 21st Century
1.1 Introduction
1.2 Development of Heterogeneous Photocatalysts
1.3 Mechanism of Action of Heterogeneous Photocatalysis
1.4 Recent Advances in Heterogeneous Photocatalyst
1.5 Heterostructure Photocatalysts for the Degradation of Organic Pollutants
1.6 Photoreactors
1.7 Photoreactors for the Degradation of Volatile Organic Compounds
1.7.1 Annular Reactors
1.7.2 Plate Reactor
1.7.3 Packed Bed Reactors
1.7.4 Honeycomb Monolith Reactors
1.7.5 Fluidized Bed Reactors
1.7.6 Batch Reactors
1.7.7 Parabolic Trough Photoreactors
1.7.8 Inclined Flat Photoreactors
1.7.9 Gas Phase Photoreactors
1.8 Advantages and Disadvantages of Heterogeneous Photocatalysis
1.9 Conclusion
Acknowledgment
References
Chapter 2 Role of Heterogeneous Catalysts for Advanced Oxidation Process in Wastewater Treatment
Abbreviations
2.1 Introduction
2.1.1 Advanced Oxidation Processes (AOPs)
2.1.2 AOPs Classification
2.1.2.1 Catalytic Oxidation
2.1.2.2 Heterogeneous Catalytic Oxidation
2.2 Effect of Pollutant
2.3 Type of Catalysts
2.3.1 Metal Organic Frameworks
2.3.1.1 Hydro (Solvo) Thermal Technique
2.3.2 Metal Oxides
2.3.2.1 Coprecipitation Method
2.3.2.2 Hydrothermal Synthesis
2.3.2.3 Sol-Gel Process
2.3.2.4 Bioreduction Method
2.3.2.5 Solvent System-Based Green Synthesis
2.3.3 Perovskites
2.3.3.1 Ultrasound-Assisted Synthesis of Perovskites
2.3.3.2 Microwave-Assisted Synthesis of Perovskites
2.3.3.3 Mechanosynthesis of Perovskites
2.3.4 Layered Double Hydroxides
2.3.4.1 Coprecipitation by the Addition of Base
2.3.5 Graphene
2.3.5.1 Electrochemical (EC) Processes
2.3.5.2 Water Electrolytic Oxidation
2.4 Some Recent Heterogeneous Catalysts for Advanced Oxidation Process
2.5 Conclusions and Future Prospect
Acknowledgement
References
Chapter 3 Green Synthesis of Photocatalysts and its Applications in Wastewater Treatment
3.1 Introduction
3.2 Photocatalysts and Green Chemistry
3.2.1 Nanophotocatalysts (NPCs)
3.2.2 Plant-Mediated Green Synthesis of NPCs
3.2.3 Biopolymer-Mediated Synthesis of NPCs
3.2.3.1 Alginic Acid
3.2.3.2 Carrageenan
3.2.3.3 Chitin and Chitosan
3.2.3.4 Guar Gum
3.2.3.5 Cellulose
3.2.3.6 Xanthan Gum
3.2.4 Green Synthesis of NPCs Using Bacteria, Algae, and Fungus
3.2.5 Characterization of NPCs Using Various Analytical Techniques
3.2.5.1 UV-Visible Spectroscopy
3.2.5.2 XRD
3.2.5.3 SEM, HR-TEM, EDX, and AFM
3.2.5.4 Fourier Transform Infrared Spectroscopy
3.2.5.5 Dynamic Light Scattering
3.2.5.6 Brunauer-Emmett-Teller (BET)
3.2.5.7 Barrett-Joyner-Halenda
3.2.6 Application of Green Synthesized NPCs in Wastewater Treatment
3.3 Limitations and Future Aspects
3.4 Conclusion
References
Chapter 4 Green Synthesis of Metal Ferrite Nanoparticles for the Photocatalytic Degradation of Dyes in Wastewater
Abbreviations
4.1 Introduction
4.2 Metal Ferrite Nanoparticles
4.3 General Synthesis Methods of Metal Ferrites and Their Limitations
4.4 Biological Synthesis of Metal Ferrite Nanostructures
4.4.1 Synthesis of Metal Ferrite Nanostructures Using Bacteria
4.4.2 Synthesis of Metal Ferrites Nanostructures Using Fungi
4.4.3 Synthesis of Metal Ferrites Nanostructures Using Plant Extracts
4.5 Plant-Derived Metal Ferrites as Photocatalysts for Dye Degradation
4.5.1 Effect of Depositing Noble and Transition Metal on Metal Ferrites for Photodegradation
4.5.2 Effect of Carbon Deposited on Metal Ferrites for Photocatalytic Degradation
4.5.3 Effect of Coupling Metal Oxide Semiconductors with Metal Ferrites for Photocatalytic Degradation
4.5.4 Biological Applications of Plant-Derived Metal Ferrites
4.6 Challenges of these Materials and Photocatalysis
4.7 Conclusion: Future Perspectives
References
Part 2: Advanced Oxidation Processes
Chapter 5 Selected Advanced Oxidation Processes for Wastewater Remediation
5.1 Introduction
5.2 Photocatalysis and Ozonation
5.2.1 Photocatalysis
5.2.2 Ozonation
5.3 Hybrid AOP Technologies
5.3.1 Hydrodynamic Cavitation
5.3.2 Hybrid AOP Systems Based on Hydrodynamic Cavitation
5.3.3 Hybrid AOP Systems Based on Ultrasound Radiation
5.3.3.1 Sonoelectrochemical Oxidation
5.3.3.2 Sonophotocatalytic Degradation
5.4 Membrane-Based AOPs
5.5 Conclusion and Future Perspectives
References
Chapter 6 Advanced Oxidation Processes-Mediated Removal of Aqueous Ammonia Nitrogen in Wastewater
Abbreviations
6.1 Introduction
6.2 Basic Chemistry and Occurrence of Ammonia Nitrogen
6.2.1 Basic Chemistry of Ammonia Nitrogen
6.2.2 Sources of Ammonia Nitrogen
6.2.3 Effects of Ammonia Nitrogen on Aquaculture Species
6.3 Photocatalytic Technique for Removal of Aqueous Ammonia Nitrogen From Wastewater
6.3.1 TiO2/TiO2-Based Photocatalyst
6.3.2 Modified TiO2 Photocatalyst
6.4 Ozonation Technique for Removal of Aqueous Ammonia Nitrogen From Wastewater
6.4.1 Noncatalytic Ozonation of Ammonia Nitrogen
6.4.2 Catalytic Ozonation of Ammonia Nitrogen
6.5 Conclusion and Future Prospects
Acknowledgments
References
Part 3: Design and Modelling of Photoreactors
Chapter 7 Recent Advances in Photoreactors for Water Treatment
7.1 Introduction
7.2 Photocatalysis Fundamentals and Mechanism
7.3 Configuration of Photoreactor
7.3.1 Source of Light Irradiation
7.3.2 Geometry of Photoreactor
7.3.3 Light Source Placement and Distribution
7.3.4 Photoreactor Materials
7.4 Types of Photoreactors
7.4.1 Slurry Photoreactors
7.4.2 Photocatalytic Membrane Photoreactors
7.4.3 Rotating Drum Photoreactors
7.4.4 Microphotoreactors
7.4.5 Annular Photoreactor (APR)
7.4.6 Closed-Loop Step Photoreactors
7.5 Photocatalytic Water Purification Using Photoreactors
7.6 Challenges for Effective Photoreactors
7.7 Conclusion
References
Chapter 8 Design of Photoreactors for Effective Dye Degradation
Abbreviations
8.1 Introduction
8.1.1 Mechanisms and Theory of AOP
8.1.2 Design of Photoreactors
8.1.2.1 Source of Irradiation
8.1.2.2 Wavelength/Lamp Selection
8.1.3 Placement of Light Source and Light Distribution
8.2 Different Photoreactors Are Used for Wastewater Treatment
8.2.1 Some Typical Photoreactors Used for Wastewater Treatment Are Described Below
8.2.2 Homogenous and Heterogenous Systems
8.2.3 Heterogenous Photocatalyst Arrangement
8.2.4 Amount of Photocatalyst
8.3 Photoreactors Designed to Work Under Visible-Light Irradiation Toward Wastewater Treatment
8.3.1 Limitations of the Currently Employed Photoreactors and Future Scope
8.4 Current and Future Developments
References
Chapter 9 Simulation of Photocatalytic Reactors
Abbreviations
9.1 Introduction
9.2 Modeling of Light Distribution
9.2.1 Light Distribution
9.2.2 Light Distribution Methods
9.2.3 Simulation Parameters
9.2.4 Influence of Bubbles on Light Distribution
9.2.5 Validation of Light Distribution Models
9.3 Photocatalysis Kinetics
9.4 Conclusion
References
Chapter 10 The Development of Self-Powered Nanoelectrocatalytic Reactor for Simultaneous Piezo-Catalytic Degradation of Bacteria and Organic Dyes in Wastewater
Abbreviations
10.1 Introduction
10.2 Degradation Techniques
10.2.1 Electrochemical Advanced Oxidation Processes (EAOPs)
10.3 Characteristics and Properties of Piezoelectric Materials
10.3.1 Natural Piezoelectric Materials
10.3.2 Synthetic Piezoelectric Materials
10.4 Synthesis of Piezoelectric Materials
10.4.1 Electrospinning Technique
10.4.2 Template Synthesis
10.4.3 Mixed Metal Oxide (MMO)/Solid State Synthesis
10.4.4 Hydrothermal/Solvothermal Method
10.4.5 Sol-Gel Method
10.5 Challenges of Piezoelectric Nanomaterials/Nanogenerators
10.6 Application of Piezoelectric Materials for Piezo-Electrocatalytic Degradation of Dyes and Bacteria in Wastewater
10.6.1 Piezo-Electrocatalytic Degradation of Organic Dyes and Bacteria in Wastewater
10.7 Conclusion and Future Perspectives
Acknowledgments
References
Index
EULA




پست ها تصادفی