توضیحاتی در مورد کتاب Physics of Data Science and Machine Learning
نام کتاب : Physics of Data Science and Machine Learning
ویرایش : 1
عنوان ترجمه شده به فارسی : فیزیک علم داده و یادگیری ماشین
سری :
نویسندگان : Ijaz A. Rauf
ناشر : CRC Press
سال نشر : 2021
تعداد صفحات : 211
ISBN (شابک) : 0367768585 , 9780367768584
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 6 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface: Motivation and Rationale
Author
CHAPTER 1 Introduction
1.1 A PHYSICIST’S VIEW OF THE NATURAL WORLD AND PROBABILITIES
1.2 DATA – TYPES OF DATA
1.2.1 Data to Information
1.2.2 Information to Knowledge
1.2.3 Critical Differences between Information and Knowledge
1.3 DATA MINING FOR KNOWLEDGE
1.4 MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE
1.5 SCOPE: WHAT THIS TEXT COVERS
1.5.1 What This Text Does Not Cover
CHAPTER 2 An Overview of Classical Mechanics
2.1 NEWTONIAN MECHANICS
2.1.1 Newton’s Laws of Motion
2.1.2 Angular Momentum, Work, and Energy
2.1.3 Multiple Interactions and Center of Mass
2.1.4 The Law of Gravitation
2.2 LAGRANGIAN MECHANICS
2.2.1 Constraints
2.2.2 Degrees of Freedom and Generalized Coordinates
2.2.3 Virtual Work and Lagrange’s Equations
2.3 HAMILTONIAN MECHANICS
2.4 CLASSICAL FIELD THEORY
2.4.1 Nonrelativistic Field Theory
2.4.1.1 Gravitational Field
2.4.1.2 Charged Particle in an Electrical Field
2.4.1.3 Charged Particle in a Magnetic Field
2.4.1.4 Electrodynamics
2.4.2 Relativistic Field Theory
2.4.2.1 The Action Principle
2.4.2.2 Field Theory for Scalar Field
2.4.2.3 Generalization of Field Theory
2.5 MAXWELL AND BOLTZMANN EQUILIBRIUM STATISTICS
CHAPTER 3 An Overview of Quantum Mechanics
3.1 KINEMATICAL FRAMEWORK
3.1.1 Heisenberg’s Uncertainty Principle
3.1.2 Quantum Mechanical Operators
3.1.3 Quantum Mechanical Energy States
3.1.4 Quantum Confinement
3.2 DYNAMICS OF QUANTUM MECHANICAL SYSTEMS
3.2.1 Energy Eigenvalue for Harmonic Oscillator
3.2.2 Eigenfunction for the Harmonic Oscillator
3.2.3 Non-Eigen States
3.3 QUANTUM STATISTICAL MECHANICS
3.3.1 Expected Value and Standard Deviation
3.3.2 Quantum Statistics
3.4 QUANTUM FIELD THEORY
3.5 PERTURBATION THEORY
CHAPTER 4 Probabilistic Physics
4.1 PROBABILITY THEORY
4.1.1 Events and Sample Space
4.1.2 Expected Value
4.1.3 Probability Amplitude
4.1.4 Two-Slit Quantum Interference
4.2 PROBABILITY DISTRIBUTIONS
4.2.1 Binomial Distribution
4.2.2 Poisson Distribution
4.2.3 Normal Distribution
4.2.4 Uniform Distribution
4.2.5 Exponential Distribution
4.3 CENTRAL LIMIT THEOREM
4.3.1 Confidence Level and Interval
4.4 HYPOTHESIS TESTING
4.4.1 Types of Error in Hypothesis Testing
4.4.2 Types of Tests and Test Statistics
4.4.2.1 z-test
4.4.2.2 t-test
4.4.2.3 Test of Proportions
4.4.2.4 Test of k-Proportions or Test of Independence
4.4.2.5 Summary of Hypothesis Testing
CHAPTER 5 Design of Experiments and Analyses
5.1 MEASUREMENT SYSTEM ANALYSIS
5.1.1 Precision and Accuracy
5.1.2 Types of Errors
5.1.3 Error Estimation and Reporting
5.2 MULTIVARIATE REGRESSION ANALYSIS
5.3 ANALYSIS OF VARIANCE
5.4 EXPERIMENTAL DESIGNS
5.4.4 Historical Data Anal ysis
5.4.1 Two-Level Full Factorial Design and Analysis
5.4.2 Three-Level Full Factorial Design and Analysis
5.4.3 Partial Factorial or Fractional Factorial Designs
5.4.3.1 Half Fraction of 2k Design
5.4.3.2 Orthogonal Array Designs or Taguchi’s L Designs
5.5 SYSTEMS MODELING
5.5.1 Linear Models
5.5.2 Nonlinear Models
CHAPTER 6 Basics of Machine Learning
6.1 INFORMATION THEORY
6.1.1 Channel Speed Limit
6.1.2 Communication System Architecture
6.1.3 Digitalization of Information
6.1.4 Source Coding
6.1.5 Entropy and Information Content
6.2 DATA HANDLING
6.2.1 Supervised Learning
6.2.1.1 Classification
6.2.1.2 Regression
6.2.1.3 Time Series Prediction
6.2.2 Semisupervised Learning
6.2.3 Unsupervised Learning
6.2.3.1 Projection
6.2.3.2 Clustering
6.2.3.3 Density Estimation
6.2.3.4 Generative Models
6.3 LEARNING INPUT AND OUTPUT FUNCTIONS
6.3.1 Input Vectors
6.3.2 Output
6.4 BAYESIAN DECISION THEORY
6.4.1 Sampling Theory Approach
6.4.2 Bayesian Inference Approach
6.5 NEURAL NETWORKS
6.5.1 Multilayer Neural Networks
6.6 SUPPORT VECTOR MACHINES
6.7 THE KERNEL FUNCTION
CHAPTER 7 Prediction, Optimization, and New Knowledge Development
7.1 DIGITAL TWINS
7.1.1 Advantages of Digital Twins
7.1.2 Development of Digital Twins
7.2 MONTE CARLO SIMULATIONS
7.3 RESPONSE SURFACE METHODOLOGY
7.3.1 The Sequential Application of Response Surface Methodology
7.3.2 Robust Design
7.3.3 Simulation Tools for Response Surface Methodology
7.4 MODEL VERIFICATION AND VALIDATION
7.4.1 Various Model Validation Techniques
7.4.2 Automation Tools for Model Verification and
Validation
REFERENCES
INDEX