Power Electronic Converters and Induction Motor Drives

دانلود کتاب Power Electronic Converters and Induction Motor Drives

42000 تومان موجود

کتاب مبدل های الکترونیکی قدرت و درایوهای موتور القایی نسخه زبان اصلی

دانلود کتاب مبدل های الکترونیکی قدرت و درایوهای موتور القایی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 10


توضیحاتی در مورد کتاب Power Electronic Converters and Induction Motor Drives

نام کتاب : Power Electronic Converters and Induction Motor Drives
عنوان ترجمه شده به فارسی : مبدل های الکترونیکی قدرت و درایوهای موتور القایی
سری : Renewable Energy: Research, Development and Policies
نویسندگان :
ناشر : Nova Science Publishers
سال نشر : 2022
تعداد صفحات : 407 [410]
ISBN (شابک) : 1685079504 , 9781685079505
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 46 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Renewable Energy: Research, Developmentand Policies Power Electronic Convertersand Induction Motor Drives Contents Preface Acknowledgments Chapter 1Current and Voltage Control of AC Power ElectronicConverters in Microgrids Abstract 1. Introduction 1.1. Motivation and Objectives 1.2. State of the Art 1.2.1. Coupling Filters Used in Microgrids 1.2.2. Current-Control Techniques in Microgrids 1.2.3. Limitations of Current-Control Techniques in Microgrids 1.2.4. Voltage-Control Techniques in Microgrids 1.2.5. Limitations of Voltage-Control Techniques in Microgrids 1.3. Contents of This Chapter 1.3.1. Enhanced Resonant Current Controller for Grid-Connected Converters withLCL Filter 1.3.2. Positive- and Negative-Sequence Current Controller with Direct Discrete-Time Pole Placement for Grid-Tied Converters with LCL Filter 1.3.3. Generalized Multi-Frequency Current Controller for Grid-ConnectedConverters with LCL Filter 1.3.4. Grid-Tied Inverter with AC-Voltage Sensorless Synchronizationand Soft-Start 1.3.5. AC-Voltage Harmonic Control for Stand-Alone and Weak-Grid-TiedConverter 1.3.6. A Finite-Control-Set Linear Current Controller with Fast Transient Responseand Low Switching Frequency for Grid-Tied Inverters 1.3.7. A Model Predictive Current Controller with Improved Robustness AgainstMeasurement Noise and Plant Model Variations 1.4. Nomenclature Subscripts and Superscripts Base Values Plant Model Variables Plant Parameters State-Space Model Parameters Controller Variables Controller Parameters Transfer Functions 2. Enhanced Resonant Current Controller for Grid-ConnectedConverters with LCL Filter 2.1. Transfer-Function Modeling of the Plant and the Resonant Controller 2.1.1. Model of the Augmented Plant 2.1.2. Disturbance Feedforward 2.2. Design of Loop Filter and the Prefilter 2.2.1. Assessment of the Dominant Frequency of the System According to theAvailable Bandwidth 2.2.2. Radial Projection and Closed-Loop Pole Placement by Means of C(z) 2.2.3. Prefilter for Eliminating the Slow Zeros 2.3. Sensitivity to Grid-Impedance Variations 2.4. Simulation and Experimental Results 2.5. Pole-Placement Equations to Locate the Poles at the Desired Locationsfrom Table 1 2.6. Computational Load 2.7. Example of Design Code 2.8. Summary 3. Positive- and Negative-Sequence Current Controller withDirect Discrete-Time Pole Placement for Grid-TiedConverters with LCL Filter 3.1. Modeling of the Plant and the Disturbance 3.1.1. The Model of the Plant for the Compensator 3.1.2. The Model of the Plant and the Disturbance for the Observer 3.2. Compensator and Observer Design Using Pole Placement 3.2.1. Compensator Design 3.2.2. Design of the Reduced-Order Observer 3.3. Parameter Sensitivity 3.3.1. Stability Regions 3.3.2. Root Locus for Lg and ESRs Sweeps and Pole Map for a Weak Grid 3.4. Experimental Results 3.5. Observer Formulas 3.6. Example of Design Code 3.7. Summary 4. GeneralizedMulti-Frequency Current Controller forGrid-Connected ConvertersWith LCL Filter 4.1. Modeling of the Plant and the Disturbance 4.2. Structure and Design of the Controller 4.3. Performance Analysis of the Proposed Controller 4.3.1. Sensitivity Function of the System 4.3.2. System Sensitivity with a Luenberger Observer and with a Kalman Filter 4.3.3. Analysis of the Reference-Tracking Performance of the ProposedMulti-Frequency Controller 4.4. Robustness to Grid Impedance Variations 4.5. Experimental and Simulation Results 4.5.1. Experimental Comparison between the Proposed Controller and a TraditionalMulti-Frequency Current Controller 4.6. Steady-StateKalman-Filter Gain 4.7. Computational Load of the Multi-Frequency Controller 4.8. Derivation Process of the Sensitivity and Complementary SensitivityFunctions 4.9. Summary 5. Grid-Tied InverterWith AC-Voltage SensorlessSynchronization and Soft-Start 5.1. Proposed Controller Structure 5.2. AC-Voltage Sensorless Synchronization 5.2.1. Relation between w and vg 5.2.2. Synchronization Scheme 5.3. Sensitivity of the Estimated Phase to Plant Modeling Errors 5.4. Performance Analysis of the Proposal 5.5. Bumpless Start 5.6. Experimental Results 5.7. Summary 6. AC-Voltage Harmonic Control for Stand-AloneandWeak-Grid-Tied Converter 6.1. Modeling of the Plant and the Disturbances 6.1.1. Model of the Plant for the Compensator 6.1.2. Disturbance Model for the Observer 6.2. Design of the Controller 6.2.1. Analysis of Single- and Dual-Loop Structures 6.2.2. Proposed Controller Structure 6.2.3. Design of the Compensator 6.2.4. Design of the Observer 6.2.5. Design of the Overcurrent Protection 6.3. Relation between Robustness and Output Impedance 6.3.1. Analysis of the Stability of the System as a Function of the Load 6.4. Simulation Results 6.5. Experimental Results 6.5.1. Islanded Operation 6.5.2. Grid Connected Operation 6.6. Summary 7. A Finite-Control-Set Linear Current Controller withFast Transient Response and Low SwitchingFrequency for Grid-Tied Inverters 7.1. Modeling of the Plant 7.2. Design of the Current Controller Theory of Operation Design of the Quantizer Design of the Linear Controller L-Filtered Converters LCL-Filtered Converters 7.3. Avoiding Grid Resonances 7.3.1. Analysis of the Switching-Noise and Switching Frequency 7.4. Experimental Results 7.4.1. Frequency Distortion Comparison 7.4.2. Transient Response Comparison 7.4.3. Operation in a Grid with an Unmodeled Resonance 7.4.4. Switching Frequency and Current Error as a Function of theModulation Index 7.4.5. Consecutive-RegionMode of Operation 7.5. Calculation of the Plant Model Matrices 7.6. Computational Complexity of the FCS Controller 7.7. Summary 8. A Model Predictive Current Controller with ImprovedRobustness against Measurement Noise and PlantModel Variations 8.1. Modeling of the Plant and the Cost Function 8.2. Design of the Current Controller 8.2.1. Computational Complexity 8.3. Current Distortion 8.4. Experimental Results 8.5. Calculation of the Kalman Gain 8.6. Summary Conclusion References Chapter 2State-of-the-ArtMulti-PhaseWindings Types Abstract 1. Introduction 2. Conventional Multiphase Winding Layouts 2.1. Single-Layer-Based ConventionalWinding Design withPrime Phase OrderWhen designing 2.1.1. Effect of Number of Phases on Machine Parameters 2.1.2. Analysis of Single-Layer MultiphaseWinding LayoutsIn 2.2. Double-Layer-Based Conventional Winding Design with CompositePhase OrderMultiphase machines 2.2.1. Vector Space Decomposition and Harmonic Mapping 2.2.2. Analysis of Double-Layer Six-PhaseWinding LayoutsThe different 3. Winding Layouts for Fault-Tolerance EnhancementOne 3.1. Combined Star/Pentagon Single-Layer Stator Winding Connection 3.1.1. MMF Flux Distribution Analysis of the SP5PWinding ConnectionFigure 3.1.3. Derating Factor Calculation 3.2. Nine-Phase Six-Terminal Concentrated Single-layer Winding Layout 3.2.1. Comparison between Nine-Phase Six-Terminal and Asymmetrical Six-PhaseIMsIn this subsection, 3.2.2. Analysis of the 9P6T Concentrated Single-LayerWinding LayoutIn 3.3. Pseudo Six-Phase IM Using a Quadruple Three-Phase StatorA pseudo 3.3.1. Comparison with Conventional A6PWinding 3.3.2. Analysis of the P6PWinding Layout 4. Building Multiphase Winding with Standard Three-PhaseStatorsAlthough 4.1. General n-PhaseWinding 4.2. Analysis of MultiphaseWindings Based on Standard Three-PhaseStatorsThe Conclusion References Chapter 3Virtual Vector Control of Six-Phase InductionMachines Abstract 1. Introduction 2. Six-Phase Electric Drive Generalities 3. Virtual Voltage Vectors as Control Actions 3.1. Multi-Vector Approaches 3.2. Harmonic Mitigation 3.3. Switching Frequency 4. Model Predictive Control Structure 4.1. PredictiveMachine Model 4.2. Cost Function 5. Comparative Experimental Results 5.1. Test Bench 5.2. Results Conclusion References Chapter 4Current Derating in Fault-Tolerant MultiphaseInduction Motor Drives Abstract 1. Introduction 2. Fault-Tolerant Six-Phase Induction Drive 2.1. Vector Space Decomposition for Symmetrical Six-Phase Machine 2.2. Post-Fault Operation under OPF 3. Current Derating in Fault-Tolerant Drive 3.1. Current Derating Factor 4. Current DeratingMethods for Torque and PowerEnhancement 4.1. Current Derating Methods 4.1.1. Rated Flux Method (RFM) 4.1.2. Equal Derating Method (EDM) 4.1.3. Comparison between RFM and EDM 4.2. Post-Fault Torque Characteristics 4.2.1. Torque Calculation for Case A (Ideal Lm) 4.2.2. Torque Calculation for Actual Lm Conclusion References Chapter 5A Systematic Review of Fault Detection and DiagnosisMethods for Induction Motors Abstract 1. Introduction 2. Types of Faults in Induction Motors 2.1. Bearing Faults 2.2. Stator Faults 2.3. Broken Rotor Bar Faults 2.4. Eccentricity Faults 3. Systematic ReviewMethodology 4. LiteratureMeta-Analysis Conclusion References About the Editor Index Blank Page




پست ها تصادفی