توضیحاتی در مورد کتاب Power Electronics for Green Energy Conversion
نام کتاب : Power Electronics for Green Energy Conversion
عنوان ترجمه شده به فارسی : الکترونیک قدرت برای تبدیل انرژی سبز
سری :
نویسندگان : Mahajan Sagar Bhaskar (editor), Nikita Gupta (editor), P. Sanjeevikumar (editor), Jens Bo Holm-Nielsen (editor), Umashankar Subramaniam (editor)
ناشر : Wiley-Scrivener
سال نشر :
تعداد صفحات : 632
ISBN (شابک) : 9781119786481 , 1119786487
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 39 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover\nHalf-Title Page\nSeries Page\nTitle Page\nCopyright Page\nContents\nPreface\n1 Green Energy Technology-Based EnergyEfficient Appliances for Buildings\n 1.1 Balance of System Appliances Needed for Green Energy Systems\n 1.1.1 Grid Interactive Inverters for Buildings with AC Wiring\n 1.1.2 Grid Interactive Inverter with No Battery Backup\n 1.1.3 Main Grid-Interactive Inverter (Hybrid Inverter)\n 1.1.4 DC-DC Converter for DC Building\n 1.1.5 Bidirectional Inverter\n 1.1.6 Battery Bank\n 1.2 Major Green Energy Home Appliances\n 1.2.1 DC Air Conditioners\n 1.2.2 DC Lighting\n 1.2.3 DC Refrigeration\n 1.2.4 Emerging Products for Grid Connected Homes and Businesses\n 1.2.5 Electrical Vehicle\n 1.3 Energy Savings Through Green Appliances\n 1.3.1 Appliance Scheduling\n 1.3.2 A Case Study of a Mid-Ranged Home with Green Home Appliances Versus Conventional Home Appliances: A Comparison of 1 Day Co\n 1.4 Conclusion\n References\n2 Integrated Electric Power Systems and Their Power Quality Issues\n 2.1 Introduction\n 2.2 Designing of a Hybrid Energy System\n 2.3 Classification of Hybrid Energy Systems\n 2.3.1 Hybrid Wind-Solar System\n 2.3.2 Hybrid Diesel-Wind System\n 2.3.3 Hybrid Wind-Hydro Power System\n 2.3.4 Hybrid Fuel Cell-Solar System\n 2.3.5 Hybrid Solar Thermal System\n 2.4 Power Quality Implications\n 2.4.1 Interruption\n 2.4.2 Undervoltage or Brownout\n 2.4.3 Voltage Sag or Dip\n 2.4.4 Noise\n 2.4.5 Frequency\n 2.4.6 Harmonic\n 2.4.7 Notching\n 2.4.8 Short-Circuit\n 2.4.9 Swell\n 2.4.10 Transient or Surges\n 2.5 Conclusion\n References\n3 Renewable Energy in India and World for Sustainable Development\n 3.1 Introduction\n 3.2 The Energy Framework\n 3.3 Status of Solar PV Energy\n 3.4 Boons of Renewable Energy\n 3.5 Energy Statistics\n 3.5.1 Coal\n 3.5.2 Natural Gas\n 3.5.3 Biofuels\n 3.5.4 Electricity\n 3.6 Renewable Energy Resources\n 3.7 Conclusion\n Abbreviations\n References\n4 Power Electronics: Technology for Wind Turbines\n 4.1 Introduction\n 4.1.1 Overview of Wind Power Generation\n 4.1.2 Advancement of Wind Power Technologies\n 4.1.3 Power Electronics Technologies for Wind Turbines\n 4.2 Power Converter Topologies for Wind Turbines\n 4.2.1 Matrix Converter\n 4.2.2 Z Source Matrix Converter\n 4.3 Quasi Z Source Direct Matrix Converter\n 4.3.1 Principle of Operation\n 4.3.2 Modulation Strategy\n 4.3.3 Simulation Results and Discussion\n 4.4 Conclusion\n References\n5 Investigation of Current Controllers for Grid Interactive Inverters\n 5.1 Introduction\n 5.2 Current Control System for Single-Phase Grid Interactive Inverters\n 5.2.1 Hysteresis Current Controller\n 5.2.2 Proportional Integral Current Control\n 5.2.3 Proportional Resonant Current Control\n 5.2.4 Dead Beat Current Control\n 5.2.5 Model Predictive Current Control\n 5.3 Simulation Results and Analysis\n 5.3.1 Results in Steady-State Operating Mode\n 5.3.2 Results in Dynamic Operating Mode\n 5.3.3 Comparative Assessment of the Current Controllers\n 5.3.4 Hardware Implementation\n 5.4 Experimental Results\n 5.5 Future Scope\n 5.6 Conclusion\n References\n6 Multilevel Converter for Static Synchronous Compensators: State-ofthe Art, Applications and Trends\n 6.1 Introduction\n 6.2 STATCOM Realization\n 6.2.1 Two-Level Converters\n 6.2.2 Early Multilevel Converters\n 6.2.3 Cascaded Multilevel Converters\n 6.2.4 Summary of Topologies\n 6.3 STATCOM Control Objectives\n 6.3.1 Operating Principle\n 6.3.2 Control Objectives\n 6.3.3 Modulation Schemes\n 6.4 Benchmarking of Cascaded Topologies\n 6.4.1 Design Assumptions\n 6.4.2 Current Stress in Semiconductor Devices\n 6.4.3 Current Stress in Submodule Capacitor\n 6.4.4 Comparison of Characteristics\n 6.5 STATCOM Trends\n 6.5.1 Cost Reduction\n 6.5.2 Reliability Requirements\n 6.5.3 Modern Grid Codes Requirements\n 6.5.4 Energy Storage Systems\n 6.6 Conclusions and Future Trends\n References\n7 Topologies and Comparative Analysis of Reduced Switch Multilevel Inverters for Renewable Energy Applications\n 7.1 Introduction\n 7.2 Reduced-Switch Multilevel Inverters\n 7.3 Comparative Analysis\n 7.4 Conclusion\n References\n8 A Novel Step-Up Switched-CapacitorBased Multilevel Inverter Topology Feasible for Green Energy Harvesting\n 8.1 Introduction\n 8.2 Proposed Basic Topology\n 8.3 Proposed Extended Topology\n 8.3.1 First Algorithm (P1)\n 8.3.2 Second Algorithm (P2)\n 8.4 Operational Mode\n 8.4.1 Mode A\n 8.4.2 Mode B\n 8.4.3 Mode C\n 8.4.4 Mode D\n 8.4.5 Mode E\n 8.4.6 Mode F\n 8.4.7 Mode G\n 8.4.8 Mode H\n 8.4.9 Mode I\n 8.4.10 Mode J\n 8.4.11 Mode K\n 8.4.12 Mode L\n 8.4.13 Mode M\n 8.4.14 Mode N\n 8.4.15 Mode O\n 8.4.16 Mode P\n 8.4.17 Mode Q\n 8.5 Standing Voltage\n 8.5.1 Standing Voltage (SV) for the First Algorithm (P1)\n 8.5.2 Standing Voltage (SV) for the Second Algorithm (P2)\n 8.6 Proposed Cascaded Topology\n 8.6.1 First Algorithm (S1)\n 8.6.2 Second Algorithm (S2)\n 8.6.3 Third Algorithm (S3)\n 8.6.4 Fourth Algorithm (S4)\n 8.6.5 Fifth Algorithm (S5)\n 8.6.6 Sixth Algorithm (S6)\n 8.7 Modulation Method\n 8.8 Efficiency and Losses Analysis\n 8.8.1 Switching Losses\n 8.8.2 Conduction Losses\n 8.8.3 Ripple Losses\n 8.8.4 Efficiency\n 8.9 Capacitor Design\n 8.10 Comparison Results\n 8.11 Simulation Results\n 8.12 Conclusion\n References\n9 Classification of Conventional and Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Generation Systems\n 9.1 Introduction\n 9.1.1 Classification of MPPT Techniques\n 9.1.2 MPPT Algorithms Based on PV Side Parameters\n 9.2 MPPT Algorithms Based on Load Side Parameters\n 9.3 Conventional MPPT Algorithms\n 9.3.1 Indirect Techniques\n 9.3.2 Direct Techniques\n 9.4 Soft Computing (SC) MPPT Techniques\n 9.4.1 MPPT Techniques Based on Artificial Intelligence (AI)\n 9.4.2 Bioinspired (BI)-Based MPPT Techniques\n 9.5 Hybrid MPPT Techniques\n 9.5.1 Conventional with Conventional (CV/CV)\n 9.5.2 Soft Computing with Soft Computing (SC/SC)\n 9.5.3 Conventional with Soft Computing (CV/SC)\n 9.5.4 Other Classifications of Hybrid Techniques\n 9.6 Discussion\n 9.7 Conclusion\n References\n10 A Simulation Analysis of Maximum Power Point Tracking Techniques for Battery-Operated PV Systems\n 10.1 Introduction\n 10.2 Background of Conventional MPPT Methods\n 10.2.1 Perturb & Observe (P&O)\n 10.2.2 Incremental Conductance (IC)\n 10.2.3 Fractional Short Circuit Current (FSCC)\n 10.2.4 Fractional Open Circuit Voltage (FOCV)\n 10.2.5 Ripple Correlation Control (RCC)\n 10.3 Simulink Model of PV System with MPPT\n 10.4 Results and Discussions\n 10.4.1 (a) Simulation Results for P&O Method\n 10.4.2 (b) Simulation Results for Incremental Conductance (IC) Method\n 10.4.3 (c) Fractional Open Circuit Voltage (FOCV) Method\n 10.4.4 (d) Fractional Short Circuit Current (FSCC) Method\n 10.4.5 (e) Ripple Correlation Control (RCC)\n 10.4.6 (f) Performance Comparison\n 10.5 Conclusion\n References\n11 Power Electronics: Technology for Grid-Tied Solar Photovoltaic Power Generation Systems\n 11.1 Introduction\n 11.2 Grid-Tied SPVPGS Technology\n 11.2.1 Module Inverters\n 11.2.2 String Inverters\n 11.2.3 Multistring Inverters\n 11.2.4 Central Inverters\n 11.3 Classification of PV Inverter Configurations\n 11.3.1 Single-Stage Isolated Inverter Configuration\n 11.3.2 Single-Stage Nonisolated Inverter Configuration\n 11.3.3 Two-Stage Isolated Inverter Configuration\n 11.3.4 Two-Stage Nonisolated Inverter Configuration\n 11.4 Analysis of Leakage Current in Nonisolated Inverter Topologies\n 11.5 Important Standards Dealing with the Grid-Connected SPVPGS\n 11.5.1 DC Current Injection and Leakage Current\n 11.5.2 Individual Harmonic Distortion and Total Harmonic Distortion\n 11.5.3 Voltage and Frequency Requirements\n 11.5.4 Reactive Power Capability\n 11.5.5 Anti-Islanding Detection\n 11.6 Various Topologies of Grid-Tied SPVPGS\n 11.6.1 AC Module Topologies\n 11.6.2 String Inverter Topologies\n 11.6.3 Multistring Inverter Topologies\n 11.6.4 Central Inverter Topologies\n 11.7 Scope for Future Research\n 11.8 Conclusions\n References\n12 Hybrid Solar-Wind System Modeling and Control\n 12.1 Introduction\n 12.2 Description of the Proposed System\n 12.3 Model of System\n 12.3.1 Model of Wind Turbine\n 12.3.2 Dynamic Model of the DFIG\n 12.3.3 Mathematic Model of Filter\n 12.3.4 Medium-Term Energy Storage\n 12.3.5 Short-Term Energy Storage\n 12.3.6 Wind Speed Model\n 12.3.7 Photovoltaic Array Model\n 12.3.8 Boost Converter Model\n 12.4 System Control\n 12.4.1 Grid Side Converter GSC Control\n 12.4.2 Rotor Side Converter RSC Control\n 12.4.3 MPPT Control Algorithm for Wind Turbine\n 12.4.4 Two-Level Energy Storage System and Control Strategy\n 12.4.5 PSO-Based GMPPT for PV System\n 12.5 Results and Interpretation\n 12.6 Conclusion\n References\n13 Static/Dynamic EconomicEnvironmental Dispatch Problem Using Cuckoo Search Algorithm\n 13.1 Introduction\n 13.2 Problem Formulation\n 13.2.1 Static Economic Dispatch\n 13.2.2 Dynamic Economic Dispatch (DED)\n 13.3 Calculation of CO2, CH4, and N2O Emitted During the Combustion\n 13.3.1 Calculation of CO2\n 13.3.2 Calculating CH4 and N2O Emissions\n 13.4 The Cuckoo Search Algorithms\n 13.5 Application\n 13.5.1 Case I: The Static Economic Dispatch\n 13.5.2 Case II: The Dynamic Economic Dispatch\n 13.6 Conclusions\n References\n14 Power Electronics Converters for EVs and Wireless Chargers: An Overview on Existent Technology and Recent Advances\n 14.1 Introduction\n 14.2 Hybrid Power System for EV Technology\n 14.3 DC/AC Converters to Drive the EV\n 14.4 DC/DC Converters for EVs\n 14.4.1 Isolated and Nonisolated DC/DC Converters for EV Application\n 14.4.2 Multi-Input DC/DC Converters in Hybrid EVs\n 14.5 WBG Devices for EV Technology\n 14.6 High-Power and High-Density DC/DC Converters for Hybrid and EV Applications\n 14.7 DC Fast Chargers and Challenges\n 14.7.1 Fast-Charging Station Architectures\n 14.7.2 Impacts of Fast Chargers on Power Grid\n 14.7.3 Fast-Charging Stations Connected to MV Grid and Challenges\n 14.8 Wireless Charging\n 14.8.1 Short History of Wireless Charging\n 14.8.2 Proficiencies\n 14.8.3 Deficiencies\n 14.9 Standards\n 14.9.1 SAE J1772\n 14.9.2 IEC 62196\n 14.9.3 SAE J2954\n 14.10 WPT Technology in Practice\n 14.11 Converters\n 14.12 Resonant Network Topologies\n 14.13 Appropriate DC/DC Converters\n 14.14 Single-Ended Wireless EV Charger\n 14.15 WPT and EV Motor Drive Using Single Inverter\n 14.15.1 Problem Definition\n 14.15.2 Wave Shaping Analysis\n 14.15.3 Convertor System\n 14.15.4 WPT System and Motor Drive Integration\n 14.16 Conclusion\n References\n15 Recent Advances in Fast-Charging Methods for Electric Vehicles\n 15.1 Introduction\n 15.2 Levels of Charging\n 15.2.1 Level 1 Charging\n 15.2.2 Level 2 Charging\n 15.2.3 Level 3 Charging\n 15.3 EV Charging Standards\n 15.4 Battery Charging Methods\n 15.5 Constant Voltage Charging\n 15.6 Constant Current Charging\n 15.7 Constant Current-Constant Voltage (CC-CV) Charging\n 15.8 Multicurrent Level Charging\n 15.9 Pulse Charging\n 15.10 Converters and Its Applications\n 15.10.1 Buck Converter\n 15.10.2 Boost Converter\n 15.10.3 Interleaved Buck Converter\n 15.10.4 Interleaved Boost Converter\n 15.11 Design of DC-DC Converters\n 15.12 Results and Discussions\n 15.13 Conclusion\n References\n16 Recent Advances in Wireless Power Transfer for Electric Vehicle Charging\n 16.1 Need for Wireless Power Transfer (WPT) in Electric Vehicles (EV)\n 16.2 WPT Theory\n 16.3 Operating Principle of IPT\n 16.3.1 Ampere’s Law\n 16.3.2 Faraday’s Law\n 16.4 Types of Wires\n 16.4.1 Litz Wire\n 16.4.2 Litz Magneto-Plate Wire (LMPW)\n 16.4.3 Tubular Conductor\n 16.4.4 REBCO Wire\n 16.4.5 Copper Clad Aluminium Wire\n 16.5 Ferrite Shapes\n 16.6 Couplers\n 16.7 Types of Charging\n 16.7.1 Static Charging\n 16.7.2 Dynamic Charging\n 16.7.3 Quasi-Dynamic Charging\n 16.8 Compensation Techniques\n 16.9 Power Converters in WPT Systems\n 16.9.1 Primary Side Converter\n 16.9.2 Secondary Side Converter\n 16.9.3 Recent Novel Converter\n 16.10 Standards\n 16.11 Conclusion\n References\n17 Flux Link Control Modulation Technique for Improving Power Transfer Characteristics of Bidirectional DC/DC Converter Used in\n 17.1 Introduction\n 17.2 GDAB-IBDC Converter\n 17.2.1 Analysis and Modeling of GDAB-IBDC\n 17.3 FLC Modulation Technique\n 17.3.1 Modes of Operation of GDAB-IBDC Converter\n 17.3.2 Analytical Modeling of SPS and FLC Modulation\n 17.4 Dead Band Analysis of GDAB-IBDC Converter\n 17.5 Simulation and Results\n 17.6 Conclusion\n References\nIndex\nAlso of Interest\n Check out these other related titles from Scrivener Publishing\nEULA